cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A372942 Numbers k that divide the k-th Apéry number (A005259).

Original entry on oeis.org

1, 5, 55, 629, 3439, 8525, 17629, 74455, 120275, 176305, 244915, 250325, 628975, 817819, 839135, 910675, 912865, 936955, 1118435, 1147925, 2344127, 4434125, 7795715, 7888477, 9276275, 10205525
Offset: 1

Views

Author

Amiram Eldar, May 17 2024

Keywords

Comments

Numbers k such that k | A005259(k).

Crossrefs

Cf. A005259.
Similar sequences: A014847 (Catalan), A016089 (Lucas), A023172 (Fibonacci), A051177 (partition), A232570 (tribonacci), A246692 (Pell), A266969 (Motzkin).

Programs

  • Mathematica
    seq[kmax_] := Module[{ap0 = 1, ap1 = 5, ap2, s = {1}}, Do[ap2 = ((34*k^3 - 51*k^2 + 27*k - 5)*ap1 - (k-1)^3*ap0)/k^3; If[Divisible[ap2, k], AppendTo[s, k]]; ap0 = ap1; ap1 = ap2, {k, 2, kmax}]; s]; seq[5000]
  • PARI
    lista(kmax) = {my(ap0 = 1, ap1 = 5, ap2); print1("1, "); for(k = 2, kmax, ap2 = ((34*k^3 - 51*k^2 + 27*k - 5)*ap1 - (k-1)^3*ap0)/k^3; if(!(ap2 % k), print1(k, ", ")); ap0 = ap1; ap1 = ap2);}

Formula

5 is a term since A005259(5) = 819005 = 5 * 163801 is divisible by 5.