This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372964 #28 May 25 2024 09:02:53 %S A372964 1,121,2161,15481,78001,261481,823201,1981561,4726081,9438121, %T A372964 19485841,33454441,62746321,99607321,168560161,253639801,410333761, %U A372964 571855801,893864881,1207533481,1778937361,2357786761,3404813281,4282153321,6093828001,7592304841,10335939121 %N A372964 a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} ( n/gcd(x_1, x_2, x_3, x_4, n) )^3. %H A372964 Seiichi Manyama, <a href="/A372964/b372964.txt">Table of n, a(n) for n = 1..10000</a> %F A372964 a(n) = Sum_{d|n} mu(n/d) * (n/d)^3 * sigma_7(d). %F A372964 From _Amiram Eldar_, May 21 2024: (Start) %F A372964 Multiplicative with a(p^e) = (p^(7*e+7) - p^(7*e+3) + p^3 - 1)/(p^7-1). %F A372964 Dirichlet g.f.: zeta(s)*zeta(s-7)/zeta(s-3). %F A372964 Sum_{k=1..n} a(k) ~ c * n^8 / 8, where c = zeta(8)/zeta(5) = 0.968319491... . (End) %F A372964 a(n) = Sum_{d|n} phi(n/d) * (n/d)^6 * sigma_6(d^2)/sigma_3(d^2). - _Seiichi Manyama_, May 24 2024 %F A372964 a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} ( gcd(x_1, n)/gcd(x_1, x_2, x_3, x_4, n) )^4. - _Seiichi Manyama_, May 25 2024 %t A372964 f[p_, e_] := (p^(7*e+7) - p^(7*e+3) + p^3 - 1)/(p^7-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, May 21 2024 *) %o A372964 (PARI) a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^3*sigma(d, 7)); %Y A372964 Cf. A068970, A084220, A372950. %Y A372964 Cf. A008683, A013955. %Y A372964 Cf. A013663, A013666. %Y A372964 Cf. A350156, A372962. %K A372964 nonn,mult %O A372964 1,2 %A A372964 _Seiichi Manyama_, May 18 2024