This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A372998 #15 May 20 2024 02:29:32 %S A372998 1,16,81,270,625,1296,2401,4362,6639,10000,14641,21870,28561,38416, %T A372998 50625,69890,83521,106224,130321,168750,194481,234256,279841,353322, %U A372998 391245,456976,538071,648270,707281,810000,923521,1118450,1185921,1336336,1500625,1792530 %N A372998 a(n) = Sum_{k=1..n} sigma( (n/gcd(k,n))^3 ). %H A372998 Amiram Eldar, <a href="/A372998/b372998.txt">Table of n, a(n) for n = 1..10000</a> %F A372998 If k is squarefree (cf. A005117) then a(k) = k^4. %F A372998 a(n) = Sum_{d|n} phi(d) * sigma(d^3). %F A372998 From _Amiram Eldar_, May 20 2024: (Start) %F A372998 Multiplicative with a(p^e) = (p^(4*e+4)-1)/(p^4-1) - (p^e-1)/(p-1). %F A372998 Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = zeta(4) * zeta(5) * Product_{p prime} (1 - 1/p^4 - 1/p^5 + 1/p^6) = 1.01649108704844291655... . (End) %t A372998 a[n_] := DivisorSum[n, EulerPhi[#] * DivisorSigma[1, #^3] &]; Array[a, 100] (* _Amiram Eldar_, May 20 2024 *) %o A372998 (PARI) a(n) = sumdiv(n, d, eulerphi(d)*sigma(d^3)); %Y A372998 Cf. A005117. %Y A372998 Cf. A013662, A013663. %K A372998 nonn,mult %O A372998 1,2 %A A372998 _Seiichi Manyama_, May 19 2024