This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373001 #14 Dec 27 2024 01:22:20 %S A373001 1641000816,1773440487,2476486656,20129719792,26256013056,28375047792, %T A373001 39623786496,106509692016,132921066096,143648679447,200595419136, %U A373001 218247135232,322075516672,420096208896,454000764672,600908378112,631190070000,633980583936,877482798192,1025625510000,1108400304375 %N A373001 Positive integers that can be expressed in at least three ways as (x-y)*(x^3-y^3). %H A373001 Chai Wah Wu, <a href="/A373001/b373001.txt">Table of n, a(n) for n = 1..352</a> %e A373001 1773440487 is here via 1773440487 = (2706 - 2697) * (2706^3 - 2697^3) = (417 - 354) * (417^3 - 354^3) = (211 - 22) * (211^3 - 22^3). %o A373001 (PARI) is(n) = { %o A373001 if(valuation(n, 3) == 1, return(0)); %o A373001 my(f = factor(n), cf = f, q, c, dc); %o A373001 cf[,2]>>=1; %o A373001 c = factorback(cf); %o A373001 dc = divisors(c); %o A373001 for(i = 1, #dc, %o A373001 dc2 = dc[i]^2; %o A373001 dk = n/dc2; %o A373001 if(dk > dc2 && (dk - dc2)%3 == 0, %o A373001 D = dc2 + 4*(dk - dc2)/3; %o A373001 if(issquare(D, &sD) && denominator((-dc[i] + sD)/2) == 1, %o A373001 q++ %o A373001 ) %o A373001 ) %o A373001 ); %o A373001 q >= 3 %o A373001 } %Y A373001 Cf. A352244. %K A373001 nonn %O A373001 1,1 %A A373001 _David A. Corneth_, May 19 2024