This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373007 #48 May 26 2024 16:10:40 %S A373007 1,125,2179,15997,78101,272375,823495,2047613,4765465,9762625, %T A373007 19487051,34857463,62748349,102936875,170182079,262094461,410338385, %U A373007 595683125,893871379,1249381697,1794395605,2435881375,3404824919,4461748727,6101640601,7843543625,10422071947 %N A373007 a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( n/gcd(x_1, x_2, x_3, x_4, x_5, n) )^2. %H A373007 Amiram Eldar, <a href="/A373007/b373007.txt">Table of n, a(n) for n = 1..10000</a> %F A373007 a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( gcd(x_1, x_2, x_3, n)/gcd(x_1, x_2, x_3, x_4, x_5, n) )^5. %F A373007 a(n) = Sum_{d|n} mu(n/d) * (n/d)^2 * sigma_7(d). %F A373007 From _Amiram Eldar_, May 25 2024: (Start) %F A373007 Multiplicative with a(p^e) = (p^(7*e+7) - p^(7*e+2) + p^2 - 1)/(p^7-1). %F A373007 Dirichlet g.f.: zeta(s)*zeta(s-7)/zeta(s-2). %F A373007 Sum_{k=1..n} a(k) ~ c * n^8 / 8, where c = zeta(8)/zeta(6) = Pi^2/10 = 0.986960440108... . (End) %t A373007 f[p_, e_] := (p^(7*e+7) - p^(7*e+2) + p^2 - 1)/(p^7-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 27] (* _Amiram Eldar_, May 25 2024 *) %o A373007 (PARI) a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^2*sigma(d, 7)); %Y A373007 Cf. A371491, A371878, A373103, A373105. %Y A373007 Cf. A068963, A084218, A372962, A372963. %Y A373007 Cf. A013664, A013666. %K A373007 nonn,mult %O A373007 1,2 %A A373007 _Seiichi Manyama_, May 25 2024