cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373008 Radii r of circles that can enclose more unit squares when having fewer rows of squares: 2*r - 2 rows instead of 2*r - 1 rows.

Original entry on oeis.org

19, 52, 65, 184, 197, 222, 230, 303, 328, 341, 425, 489, 646, 985, 1018, 1328, 1383, 1400, 1637, 1743, 1806, 1870, 1938, 1997, 2060, 2065, 2179, 2192, 2433, 2603, 2610, 2611, 2675, 2692, 2747, 2895, 2925, 2975, 3008, 3107, 3254, 3446, 3462, 3619, 3635
Offset: 1

Views

Author

David Dewan, May 19 2024

Keywords

Comments

Numbers r for which A372847(r) > A125228(r).
For circles with these radii, a smaller number of rows (2*r - 2) allows more efficient packing than a larger number of rows (2*r - 1).

Examples

			Radius     2*r-2 rows         2*r-1 rows
19          1072 squares       1071 squares
52          8332 squares       8331 squares
65         13076 squares      13073 squares
		

Crossrefs

Cf. A125228 (odd number of rows with maximum squares per row), A372847 (even number of rows with maximum squares per row).

Programs

  • Mathematica
    lessRows[r_] := 2 Sum[Floor[2 Sqrt[r^2 - k^2]], {k, r - 1}]
    moreRows[r_] := 2 Sum[Floor[2 Sqrt[r^2 - (k + 1/2)^2]], {k, r - 1}] + 2 r - 1
    Select[Range@100,lessRows[#] > moreRows[#] &]

Formula

{ r : 2*Sum_{k=1..r-1} floor(2*sqrt(r^2 - k^2)) > 2*Sum_{k=1..r-1} floor(2*sqrt(r^2 - (k+1/2)^2)) + 2*r - 1 }.