This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373021 #20 Apr 13 2025 19:57:58 %S A373021 6,6,6,4,4,8,8,7,0,8,1,2,3,1,3,9,1,4,8,6,1,6,3,5,7,3,2,8,5,0,1,7,8,6, %T A373021 5,3,2,0,0,7,9,1,7,4,2,0,3,2,8,9,7,8,9,4,2,0,2,0,7,7,9,5,1,1,1,4,9,3, %U A373021 4,8,6,5,9,3,7,7,1,6,8,8,6,5,3,8,7,4 %N A373021 Decimal expansion of Sum_{k>=0} sin(k*Pi/5)/2^k. %C A373021 Guide to related sequences: %C A373021 sequence summand approximation minimal polynomial %C A373021 (a(n)) sin(k*Pi/5)/2^k 0.6664488708 5 - 65*x^2 + 121*x^4 %C A373021 A373022 sin(2*k*Pi/5)/2^k 0.5053526528 5 - 265*x^2 + 961*x^4 %C A373021 A373023 sin(3*k*Pi/5)/2^k 0.3050180080 5 - 65*x^2 + 121*x^4 %C A373021 A373024 sin(4*k*Pi/5)/2^k 0.1427344344 5 - 265*x^2 + 961*x^4 %C A373021 A373025 cos(k*Pi/5)/2^k 1.3503729060 11 - 23*x + 11*x^2 %C A373021 A373026 cos(2*k*Pi/5)/2^k 0.8985194182 19 - 49*x + 31*x^2 %C A373021 A373027 cos(3*k*Pi/5)/2^k 0.7405361848 11 - 23*x + 11*x^2 %C A373021 A373028 cos(4*k*Pi/5)/2^k 0.6821257430 19 - 49*x + 31*x^2 %F A373021 Equals sqrt(10 - 2*sqrt(5)) / (8 - 2*sqrt(5)). %F A373021 Equals (-1)*Sum_{k>=0} sin(9*k*Pi/5)/2^k. %F A373021 _Peter J. C. Moses_ (May 22 2024) found the following generalized summation identities for the eight sequences in Comments and many other sequences: %F A373021 Sum_{k>=0} sin(h*k + Pi/m)/b^(k+r) = b^(1-r)*(b*sin(Pi/m) + sin(h - Pi/m)/(1 + b^2 - 2*b*cos*(Pi/m)). %F A373021 Sum_{k>=0} cos(h*k + Pi/m)/b^(k+r) = b^(1-r)*(b*cos(Pi/m) + cos(h - Pi/m)/(1 + b^2 - 2*b*cos*(Pi/m)). %e A373021 0.666448870812313914861635732850178653200791742032... %t A373021 {b, m, h} = {2, 5, 1}; s = Sum[Sin[ h k Pi/m]/b^k, {k, 0, Infinity}] %t A373021 d = N[s, 100] %t A373021 First[RealDigits[d], 100] %Y A373021 Cf. A373021, A373022, A373023, A373024, A373025, A373026, A373027, A373028. %K A373021 nonn,cons %O A373021 0,1 %A A373021 _Clark Kimberling_, Jun 09 2024