This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373044 #40 May 21 2024 11:13:59 %S A373044 2,3,5,7,11,23,67,89,101,4567,10111,67891,89101,789101,4567891, %T A373044 23456789,56789101,1234567891,45678910111,12345678910111, %U A373044 1112123456789101,23456789101112123,112123456789101112123,891011121234567891011,4567891011121234567891 %N A373044 Prime concatenated analog clock numbers read clockwise. Version 2: hours > 9 are split in 2 digits. %C A373044 In this version, the numbers 10, 11, and 12 may be split up into individual digits, in contrast to A036342. %C A373044 a(59) has 1325 digits. %H A373044 Michael S. Branicky, <a href="/A373044/b373044.txt">Table of n, a(n) for n = 1..58</a> %H A373044 Eric Angelini, <a href="https://cinquantesignes.blogspot.com/2024/05/philip-gustons-primes.html">Philip Guston's primes</a> %H A373044 Tiziano Mosconi, in reply to Carlos Rivera, <a href="https://www.primepuzzles.net/puzzles/puzz_019.htm">Puzzle 19: Primes on a clock</a>, primepuzzles.net, Aug 13 2001. %e A373044 101 is a term here using the digits 1 and 0 from 10 and the first 1 of 11. %o A373044 (Python) %o A373044 import heapq %o A373044 from sympy import isprime %o A373044 from itertools import islice %o A373044 def agen(): # generator of terms %o A373044 digits = [1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 0, 1, 1, 1, 2] %o A373044 h = [(digits[i], i) for i in range(len(digits))] %o A373044 found = set() %o A373044 while True: %o A373044 v, last = heapq.heappop(h) %o A373044 if v not in found and isprime(v): %o A373044 found.add(v) %o A373044 yield v %o A373044 nxt = (last+1)%len(digits) %o A373044 heapq.heappush(h, (v*10+digits[nxt], nxt)) %o A373044 print(list(islice(agen(), 25))) %o A373044 (PARI) %o A373044 A373044_row(r)={my(d=concat([digits(i)|i<-[1..12]]), p); Set([p| s<-[1..#d], d[s]&& isprime(p=fromdigits([d[i%#d+1]| i<-[s-1..s+r-2]]))])}\\ r-digit-terms %o A373044 A373044_upto_length(L)=concat([A373044_row(r)|r<-[1..L]]) \\ _M. F. Hasler_, May 21 2024 %Y A373044 Cf. A036342, A373045. %K A373044 nonn,base %O A373044 1,1 %A A373044 _Eric Angelini_ and _Michael S. Branicky_, May 20 2024