This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373057 #8 May 21 2024 05:27:47 %S A373057 2,6,8,10,60,70,120,128,136,9822,18632,32768,32896,36720,69726,73662, %T A373057 73686,73734,85962,86046,87114,87198,87222,87258,87294,87306,87342, %U A373057 87366,87546,87558,88014,88278,88302,88338,88386,127326,128046,128082,128382,128406,128598 %N A373057 Numbers k such that iphi(k) divides k, where iphi is the infinitary Euler phi function (A064380). %C A373057 Numbers k such that the number of numbers less than k that are infinitarily relatively prime to k is a divisor of k. %H A373057 Amiram Eldar, <a href="/A373057/b373057.txt">Table of n, a(n) for n = 1..218</a> %e A373057 2 is a term since ipghi(2) = 1 divides 2. %e A373057 6 is a term since ipghi(6) = 6 divides 6. %e A373057 60 is a term since ipghi(60) = 30 divides 60. %t A373057 infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[ FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]]; q[n_] := Divisible[n, Sum[Boole[infCoprimeQ[j, n]], {j, 1, n-1}]]; Select[Range[2, 200], q] %o A373057 (PARI) isinfcoprime(n1, n2) = {my(g = gcd(n1, n2), p, e1, e2); if(g == 1, return(1)); p = factor(g)[, 1]; for(i=1, #p, e1 = valuation(n1, p[i]); e2 = valuation(n2, p[i]); if(bitand(e1, e2) > 0, return(0))); 1; } %o A373057 is(n) = if(n < 2, 0, !(n % sum(j = 1, n-1, isinfcoprime(j, n)))); %Y A373057 Cf. A064380. %Y A373057 Similar sequences: A007694, A097296, A319481, A335327. %K A373057 nonn %O A373057 1,1 %A A373057 _Amiram Eldar_, May 21 2024