cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373058 The sum of the aliquot coreful divisors of the nonsquarefree numbers.

This page as a plain text file.
%I A373058 #13 Jul 23 2024 10:51:15
%S A373058 2,6,3,6,14,6,10,18,5,12,14,30,36,30,22,15,42,7,10,26,24,42,30,21,62,
%T A373058 34,96,15,38,70,39,42,66,30,46,90,14,33,80,78,126,98,58,39,90,11,62,
%U A373058 30,42,126,66,60,102,70,216,21,74,30,114,51,78,150,78,82,126,13
%N A373058 The sum of the aliquot coreful divisors of the nonsquarefree numbers.
%C A373058 A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
%C A373058 The positive terms of A336563: if k is a squarefree number (A005117) then the only coreful divisor of k is k itself, so k has no aliquot coreful divisors.
%C A373058 The number of the aliquot coreful divisors of the n-th nonsquarefree number is A368039(n).
%H A373058 Amiram Eldar, <a href="/A373058/b373058.txt">Table of n, a(n) for n = 1..10000</a>
%F A373058 a(n) = A336563(A013929(n)).
%F A373058 Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (A065487 - 1)/(1-1/zeta(2))^2 = 1.50461493205911656114... .
%t A373058 f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; Select[Array[s, 300], # > 0 &]
%o A373058 (PARI) lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(!issquarefree(f), print1(prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - 1) - k, ", "))); }
%o A373058 (Python)
%o A373058 from math import prod, isqrt
%o A373058 from sympy import mobius, factorint
%o A373058 def A373058(n):
%o A373058     def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
%o A373058     m, k = n, f(n)
%o A373058     while m != k:
%o A373058         m, k = k, f(k)
%o A373058     return prod((p**(e+1)-1)//(p-1)-1 for p, e in factorint(m).items())-m # _Chai Wah Wu_, Jul 22 2024
%Y A373058 Cf. A005117, A013661, A013929, A065487, A229099, A307958, A336563.
%Y A373058 Cf. A084936, A174961, A275699, A368038, A368039, A368040, A368541, A368713.
%K A373058 nonn,easy
%O A373058 1,1
%A A373058 _Amiram Eldar_, May 21 2024