This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373098 #47 Jul 06 2024 21:13:24 %S A373098 0,2,8,4,4,0,4,6,8,8,0,8,2,6,6,0,6,4,2,2,0,2,8,4,4,0,4,6,8,8,0,8,2,6, %T A373098 6,0,6,4,2,2,0,2,8,4,4,0,4,6,8,8,0,8,2,6,6,0,6,4,2,2,0,2,8,4,4,0,4,6, %U A373098 8,8,0,8,2,6,6,0,6,4,2,2,0,2,8,4,4,0,4,6,8,8,0,8,2,6,6,0,6,4,2,2 %N A373098 Last digit of n*2^n. %C A373098 Periodic with period 20: [0,2,8,4,4,0,4,6,8,8,0,8,2,6,6,0,6,4,2,2]. %H A373098 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,-1,1,1,-1,-1,1,0,-1,0,1). %F A373098 a(n) = A010879(A036289(n)). %F A373098 a(n) = A373099(n) - 1. %F A373098 a(n) = A373100(n) + 1 (n >= 1). %F A373098 a(n) = 0 if n mod 5 = 0, %F A373098 2 if n mod 20 = {1, 12, 18, 19}, %F A373098 8 if n mod 20 = {2, 8, 9, 11}, %F A373098 4 if n mod 20 = {3, 4, 6, 17}, %F A373098 6 if n mod 20 = {7, 13, 14, 16}. %p A373098 a:= n-> n*2&^n mod 10: %p A373098 seq(a(n), n=0..100); %t A373098 a[n_] := Mod[n*2^n, 10] %o A373098 (Python) %o A373098 def a(n): %o A373098 return (n * 2**n) % 10 %o A373098 (PARI) a(n,b=10) = lift(n*Mod(2,b)^n) \\ _Hugo Pfoertner_, May 24 2024 %Y A373098 Cf. A010879, A036289. %Y A373098 Cf. A373099, A373100. %K A373098 nonn,base,easy %O A373098 0,2 %A A373098 _Javier Rodríguez Ríos_, May 23 2024