This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373103 #16 May 26 2024 15:05:12 %S A373103 1,497,19603,254449,1952501,9742691,40351207,130277873,385845769, %T A373103 970392997,2357933051,4987963747,10604470813,20054549879,38274877103, %U A373103 66702270961,118587792977,191765347193,322687567459,496811926949,791004710821,1171892726347,1801152381623 %N A373103 a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( n/gcd(x_1, x_2, x_3, x_4, x_5, n) )^4. %H A373103 Amiram Eldar, <a href="/A373103/b373103.txt">Table of n, a(n) for n = 1..10000</a> %F A373103 a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} ( gcd(x_1, n)/gcd(x_1, x_2, x_3, x_4, x_5, n) )^5. %F A373103 a(n) = Sum_{d|n} mu(n/d) * (n/d)^4 * sigma_9(d). %F A373103 a(n) = Sum_{d|n} phi(n/d) * (n/d)^8 * sigma_8(d^2)/sigma_4(d^2). %F A373103 From _Amiram Eldar_, May 25 2024: (Start) %F A373103 Multiplicative with a(p^e) = (p^(9*e+9) - p^(9*e+4) + p^4 - 1)/(p^9-1). %F A373103 Dirichlet g.f.: zeta(s)*zeta(s-9)/zeta(s-4). %F A373103 Sum_{k=1..n} a(k) ~ c * n^10 / 10, where c = zeta(10)/zeta(6) = Pi^4/99 = 0.983930212464... . (End) %t A373103 f[p_, e_] := (p^(9*e+9) - p^(9*e+4) + p^4 - 1)/(p^9-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 24] (* _Amiram Eldar_, May 25 2024 *) %o A373103 (PARI) a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^4*sigma(d, 9)); %o A373103 (PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*(n/d)^8*sigma(d^2, 8)/sigma(d^2, 4)); %Y A373103 Cf. A371491, A371878, A373007, A373105. %Y A373103 Cf. A350156, A372962, A372964. %Y A373103 Cf. A013664, A013668. %K A373103 nonn,mult %O A373103 1,2 %A A373103 _Seiichi Manyama_, May 25 2024