A373110 Number of distinct circles that can be constructed from the 4 vertices and the equally spaced 4*n points placed on the sides of a square when every pair of the 4 + 4*n points are connected by a circle and where the points lie at the ends of the circle's diameter.
5, 22, 54, 99, 159, 232, 320, 421, 537, 666, 810, 967, 1139, 1324, 1524, 1737, 1965, 2206, 2462, 2731, 3015, 3312, 3624, 3949
Offset: 0
Formula
Conjectured:
For even n, a(n) = (14*n^2 + 21*n + 10)/2.
For odd n, a(n) = (14*n^2 + 21*n + 9)/2.
Comments