cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373120 Number of distinct possible binary ranks of integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).

This page as a plain text file.
%I A373120 #7 May 27 2024 07:14:03
%S A373120 1,1,1,2,3,4,6,8,11,15,20,26,33,43,55,70,89,109,136,167,206,251,306,
%T A373120 371,445,535,639,759,904,1069,1262,1489,1747,2047,2390,2784,3237,3754,
%U A373120 4350,5027,5798,6680,7671,8808,10091,11543,13190,15040,17128,19477,22118
%N A373120 Number of distinct possible binary ranks of integer partitions of n, where the binary rank of a partition y is given by Sum_i 2^(y_i-1).
%e A373120 The partitions of 4 are (4), (3,1), (2,2), (2,1,1), (1,1,1,1), with respective binary ranks 8, 5, 4, 4, 4, so a(4) = 3.
%t A373120 Table[Length[Union[Total[2^(#-1)]&/@IntegerPartitions[n]]],{n,0,15}]
%Y A373120 The strict case is A000009.
%Y A373120 A048675 gives binary rank of prime indices, distinct A087207.
%Y A373120 A118462 lists binary ranks of strict integer partitions, row sums A372888.
%Y A373120 A277905 groups all positive integers by binary rank of prime indices.
%Y A373120 A372890 adds up binary ranks of integer partitions.
%Y A373120 Binary indices (A048793):
%Y A373120 - length A000120, complement A023416
%Y A373120 - min A001511, opposite A000012
%Y A373120 - max A029837 or A070939, opposite A070940
%Y A373120 - sum A029931, product A096111
%Y A373120 - reverse A272020
%Y A373120 - complement A368494, sum A359400
%Y A373120 - opposite complement A371571, sum A359359
%Y A373120 - opposite A371572, sum A230877
%Y A373120 Cf. A000041, A018819, A158704, A158705, A225620, A231204, A372688.
%K A373120 nonn
%O A373120 0,4
%A A373120 _Gus Wiseman_, May 26 2024