This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373123 #10 May 29 2024 07:05:17 %S A373123 1,5,18,63,218,891,3676,15137,60580,238672,953501,3826167,15308186, %T A373123 61204878,244709252,979285522,3917052950,15664274802,62663847447, %U A373123 250662444349,1002632090376,4010544455838,16042042419476,64168305037147,256675237863576 %N A373123 Sum of all squarefree numbers from 2^(n-1) to 2^n - 1. %e A373123 This is the sequence of row sums of A005117 treated as a triangle with row-lengths A077643: %e A373123 1 %e A373123 2 3 %e A373123 5 6 7 %e A373123 10 11 13 14 15 %e A373123 17 19 21 22 23 26 29 30 31 %e A373123 33 34 35 37 38 39 41 42 43 46 47 51 53 55 57 58 59 61 62 %t A373123 Table[Total[Select[Range[2^(n-1),2^n-1],SquareFreeQ]],{n,10}] %o A373123 (PARI) a(n) = my(s=0); forsquarefree(i=2^(n-1), 2^n-1, s+=i[1]); s; \\ _Michel Marcus_, May 29 2024 %Y A373123 Counting all numbers (not just squarefree) gives A010036. %Y A373123 For the sectioning of A005117: %Y A373123 Row-lengths are A077643, partial sums A143658. %Y A373123 First column is A372683, delta A373125, indices A372540, firsts of A372475. %Y A373123 Last column is A372889, delta A373126, indices A143658, diffs A077643. %Y A373123 For primes instead of powers of two: %Y A373123 - sum A373197 %Y A373123 - length A373198 = A061398 - 1 %Y A373123 - maxima A112925, opposite A112926 %Y A373123 For prime instead of squarefree: %Y A373123 - sum A293697 (except initial terms) %Y A373123 - length A036378 %Y A373123 - min A104080 or A014210, indices A372684 (firsts of A035100) %Y A373123 - max A014234, delta A013603 %Y A373123 A000120 counts ones in binary expansion (binary weight), zeros A080791. %Y A373123 A005117 lists squarefree numbers, first differences A076259. %Y A373123 A030190 gives binary expansion, reversed A030308. %Y A373123 A070939 or (preferably) A029837 gives length of binary expansion. %Y A373123 Cf. A372473 (firsts of A372472), A372541 (firsts of A372433). %Y A373123 Cf. A029931, A048793, A049093, A049094, A059015, A069010, A077641. %K A373123 nonn %O A373123 1,2 %A A373123 _Gus Wiseman_, May 27 2024