This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373124 #9 May 31 2024 06:12:58 %S A373124 1,2,7,11,45,105,325,989,3268,10125,33017,111435,369576,1277044, %T A373124 4362878,15233325,53647473,189461874,676856245,2422723580,8743378141, %U A373124 31684991912,115347765988,421763257890,1548503690949,5702720842940,21074884894536,78123777847065 %N A373124 Sum of indices of primes between powers of 2. %C A373124 Sum of k such that 2^n+1 <= prime(k) <= 2^(n+1). %e A373124 Row-sums of the sequence of all positive integers as a triangle with row-lengths A036378: %e A373124 1 %e A373124 2 %e A373124 3 4 %e A373124 5 6 %e A373124 7 8 9 10 11 %e A373124 12 13 14 15 16 17 18 %e A373124 19 20 21 22 23 24 25 26 27 28 29 30 31 %e A373124 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 %t A373124 Table[Total[PrimePi/@Select[Range[2^(n-1)+1,2^n],PrimeQ]],{n,10}] %o A373124 (PARI) ip(n) = primepi(1<<n); \\ A007053 %o A373124 t(n) = n*(n+1)/2; \\ A000217 %o A373124 a(n) = t(ip(n+1)) - t(ip(n)); \\ _Michel Marcus_, May 31 2024 %Y A373124 For indices of primes between powers of 2: %Y A373124 - sum A373124 (this sequence) %Y A373124 - length A036378 %Y A373124 - min A372684 (except initial terms), delta A092131 %Y A373124 - max A007053 %Y A373124 For primes between powers of 2: %Y A373124 - sum A293697 %Y A373124 - length A036378 %Y A373124 - min A104080 or A014210 %Y A373124 - max A014234, delta A013603 %Y A373124 For squarefree numbers between powers of 2: %Y A373124 - sum A373123 %Y A373124 - length A077643, run-lengths of A372475 %Y A373124 - min A372683, delta A373125, indices A372540 %Y A373124 - max A372889, delta A373126, indices A143658 %Y A373124 Cf. A000040, A000120, A014499, A029837, A029931, A035100, A069010, A070939, A112925, A112926, A211997. %K A373124 nonn %O A373124 0,2 %A A373124 _Gus Wiseman_, May 31 2024