This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373125 #12 May 31 2024 09:20:52 %S A373125 0,0,1,2,1,1,1,1,1,2,3,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,2,1,1,2, %T A373125 1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,2,3,1,1,1,2,1,2,1,1,1,1,1,2,1,1,1,1, %U A373125 2,3,3,1,1,1,1,2,1,1,2,1,1,2,1,1,1,1,1 %N A373125 Difference between 2^n and the least squarefree number >= 2^n. %F A373125 a(n) = A372683(n)-2^n. - _R. J. Mathar_, May 31 2024 %t A373125 Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&]-2^n,{n,0,100}] %Y A373125 For prime instead of squarefree we have A092131, opposite A013603. %Y A373125 For primes instead of powers of 2: A240474, A240473, A112926, A112925. %Y A373125 Difference between 2^n and A372683(n). %Y A373125 The opposite is A373126, delta of A372889. %Y A373125 A005117 lists squarefree numbers, first differences A076259. %Y A373125 A053797 gives lengths of gaps between squarefree numbers. %Y A373125 A061398 counts squarefree numbers between primes (exclusive). %Y A373125 A070939 or (preferably) A029837 gives length of binary expansion. %Y A373125 A077643 counts squarefree terms between powers of 2, run-lengths of A372475. %Y A373125 A143658 counts squarefree numbers up to 2^n. %Y A373125 Cf. A372473 (firsts of A372472), A372541 (firsts of A372433). %Y A373125 For primes between powers of 2: %Y A373125 - sum A293697 (except initial terms) %Y A373125 - length A036378 %Y A373125 - min A104080 or A014210, indices A372684 (firsts of A035100) %Y A373125 - max A014234, delta A013603 %Y A373125 Cf. A010036, A029931, A049093-A049096, A077641, A372540, A373197, A373198. %K A373125 nonn %O A373125 0,4 %A A373125 _Gus Wiseman_, May 28 2024