This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373128 #9 Jun 10 2024 08:52:59 %S A373128 1,3,10,8,19,162,1853,2052,1633,26661,46782,3138650,1080330 %N A373128 Least k such that the k-th maximal antirun of squarefree numbers has length n. Position of first appearance of n in A373127. %C A373128 An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one. %H A373128 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a> %e A373128 The maximal antiruns of squarefree numbers begin: %e A373128 1 %e A373128 2 %e A373128 3 5 %e A373128 6 %e A373128 7 10 %e A373128 11 13 %e A373128 14 %e A373128 15 17 19 21 %e A373128 22 %e A373128 23 26 29 %e A373128 30 %e A373128 31 33 %e A373128 34 %e A373128 35 37 %e A373128 The a(n)-th rows are: %e A373128 1 %e A373128 3 5 %e A373128 23 26 29 %e A373128 15 17 19 21 %e A373128 47 51 53 55 57 %e A373128 483 485 487 489 491 493 %e A373128 For example, (23, 26, 29) is the first maximal antirun of 3 squarefree numbers, so a(3) = 10. %t A373128 t=Length/@Split[Select[Range[10000],SquareFreeQ[#]&],#1+1!=#2&]//Most; %t A373128 spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[Max@@#]&]; %t A373128 Table[Position[t,k][[1,1]],{k,spnm[t]}] %Y A373128 For composite instead of squarefree we have A073051. %Y A373128 Positions of first appearances in A373127. %Y A373128 The version for nonsquarefree runs is A373199, firsts of A053797. %Y A373128 For prime instead of squarefree we have A373401, firsts of A027833. %Y A373128 A005117 lists the squarefree numbers, first differences A076259. %Y A373128 A013929 lists the nonsquarefree numbers, first differences A078147. %Y A373128 Cf. A006512, A007674, A049093, A068781, A072284, A077641, A120992, A174965, A251092, A373198, A373408, A373411. %K A373128 nonn,more %O A373128 1,2 %A A373128 _Gus Wiseman_, Jun 08 2024