This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373168 #13 Jul 28 2024 03:56:46 %S A373168 1,1,1,3,1,1,13,2,2,1,73,6,6,3,1,501,24,24,12,4,1,4051,120,120,60,20, %T A373168 5,1,37633,720,720,360,120,30,6,1,394353,5040,5040,2520,840,210,42,7, %U A373168 1,4596553,40320,40320,20160,6720,1680,336,56,8,1,58941091,362880,362880,181440,60480,15120,3024,504,72,9,1 %N A373168 Triangle read by rows: the exponential almost-Riordan array ( exp(x/(1-x)) | 1/(1-x), x ). %H A373168 Y. Alp and E. G. Kocer, <a href="https://doi.org/10.1007/s00025-024-02193-5">Exponential Almost-Riordan Arrays</a>, Results Math 79, 173 (2024). See page 13. %F A373168 T(n,0) = n! * [x^n] exp(x/(1-x)); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] 1/(1-x)*x^(k-1). %F A373168 T(n,3) = A001710(n-1) for n > 2. %F A373168 T(n,4) = A001715(n-1) for n > 3. %F A373168 T(n,5) = A001720(n-1) for n > 4. %F A373168 T(n,6) = A001725(n-1) for n > 5. %F A373168 T(n,7) = A001730(n-1) for n > 6. %F A373168 T(n,8) = A049388(n-8) for n > 7. %F A373168 T(n,9) = A049389(n-9) for n > 8. %F A373168 T(n,10) = A049398(n-10) for n > 9. %F A373168 T(n,11) = A051431(n-11) for n > 10. %e A373168 The triangle begins: %e A373168 1; %e A373168 1, 1; %e A373168 3, 1, 1; %e A373168 13, 2, 2, 1; %e A373168 73, 6, 6, 3, 1; %e A373168 501, 24, 24, 12, 4, 1; %e A373168 4051, 120, 120, 60, 20, 5, 1; %e A373168 ... %t A373168 T[n_,0]:=n!SeriesCoefficient[Exp[x/(1-x)],{x,0,n}]; T[n_,k_]:=(n-1)!/(k-1)!SeriesCoefficient[1/(1-x)*x^(k-1),{x,0,n-1}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten %Y A373168 Cf. A000142, A000262 (k=0), A001710, A001715, A001720, A001725, A001730, A049388, A049389, A049398, A051431. %Y A373168 Triangle A094587 with 1st column A000262. %K A373168 nonn,tabl %O A373168 0,4 %A A373168 _Stefano Spezia_, May 26 2024