This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373169 #33 Jun 08 2024 08:53:43 %S A373169 1,1,2,1,3,3,1,4,6,4,1,5,9,1,5,1,6,12,16,6,6,1,7,15,22,25,12,7,1,8,18, %T A373169 28,35,36,19,8,1,9,21,34,45,51,49,27,9,1,1,24,4,55,66,7,64,36,1,1,11, %U A373169 18,46,29,81,91,29,81,46,2,1,12,3,43,75,6,112,12,54,1,57,3 %N A373169 Square array read by ascending antidiagonals: T(n,k) = noz(T(n,k-1) + (k-1)*(n-2) + 1), with T(n,1) = 1, n >= 2, k >= 1, where noz(n) = A004719(n). %C A373169 Row n is the zeroless analog of the positive n-gonal numbers. %H A373169 Paolo Xausa, <a href="/A373169/b373169.txt">Table of n, a(n) for n = 2..11326</a> (first 150 antidiagonals, flattened). %H A373169 Wikipedia, <a href="https://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>. %e A373169 The array begins: %e A373169 n\k| 1 2 3 4 5 6 7 8 9 10 ... %e A373169 ---------------------------------------------------- %e A373169 2 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, ... = A177274 %e A373169 3 | 1, 3, 6, 1, 6, 12, 19, 27, 36, 46, ... = A243658 (from n = 1) %e A373169 4 | 1, 4, 9, 16, 25, 36, 49, 64, 81, 1, ... = A370812 %e A373169 5 | 1, 5, 12, 22, 35, 51, 7, 29, 54, 82, ... = A373171 %e A373169 6 | 1, 6, 15, 28, 45, 66, 91, 12, 45, 82, ... = A373172 %e A373169 7 | 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, ... %e A373169 8 | 1, 8, 21, 4, 29, 6, 43, 86, 135, 19, ... %e A373169 9 | 1, 9, 24, 46, 75, 111, 154, 24, 81, 145, ... %e A373169 10 | 1, 1, 18, 43, 76, 117, 166, 223, 288, 361, ... %e A373169 ... | \______ A373170 (main diagonal) %e A373169 A004719 (from n = 2) %t A373169 noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]]; %t A373169 A373169[n_, k_] := A373169[n, k] = If[k == 1, 1, noz[A373169[n, k-1] + (k-1)*(n-2) + 1]]; %t A373169 Table[A373169[n - k + 1, k], {n, 2, 15}, {k, n - 1}] %o A373169 (PARI) noz(n) = fromdigits(select(sign, digits(n))); %o A373169 T(n,k) = if (k==1, 1, noz(T(n,k-1) + (k-1)*(n-2) + 1)); %o A373169 matrix(7,7,n,k,T(n+1,k)) \\ _Michel Marcus_, May 30 2024 %Y A373169 Cf. rows 2..6: A177274, A243658, A370812, A373171, A373172. %Y A373169 Cf. A373170 (main diagonal). %Y A373169 Cf. A004719, A057145. %K A373169 nonn,tabl,base,easy %O A373169 2,3 %A A373169 _Paolo Xausa_, May 27 2024