cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373184 G.f. A(x) satisfies A(x) = 1/(1 - x)^2 - 1 + A(x^3).

This page as a plain text file.
%I A373184 #24 May 27 2024 22:39:51
%S A373184 2,3,6,5,6,10,8,9,16,11,12,18,14,15,22,17,18,29,20,21,30,23,24,34,26,
%T A373184 27,44,29,30,42,32,33,46,35,36,55,38,39,54,41,42,58,44,45,68,47,48,66,
%U A373184 50,51,70,53,54,84,56,57,78,59,60,82,62,63,94,65,66,90,68,69,94,71,72,107,74,75,102,77,78,106,80,81
%N A373184 G.f. A(x) satisfies A(x) = 1/(1 - x)^2 - 1 + A(x^3).
%H A373184 Seiichi Manyama, <a href="/A373184/b373184.txt">Table of n, a(n) for n = 1..10000</a>
%F A373184 a(3*n+1) = 3*n+2, a(3*n+2) = 3*n+3 and a(3*n+3) = 3*n+4 + a(n+1) for n >= 0.
%F A373184 G.f.: A(x) = Sum_{k>=0} (1/(1 - x^(3^k))^2 - 1).
%o A373184 (Ruby)
%o A373184 def A(k, n)
%o A373184   ary = [0]
%o A373184   (1..n).each{|i|
%o A373184     j = i + 1
%o A373184     j += ary[i / k] if i % k == 0
%o A373184     ary << j
%o A373184   }
%o A373184   ary[1..-1]
%o A373184 end
%o A373184 p A(3, 80)
%Y A373184 Cf. A084432, A373185.
%Y A373184 Cf. A327625.
%K A373184 nonn,easy
%O A373184 1,1
%A A373184 _Seiichi Manyama_, May 27 2024