A373193 On a unit square grid, the number of squares enclosed by a circle of radius n with origin at the center of a square.
1, 5, 21, 37, 61, 89, 129, 177, 221, 277, 341, 401, 489, 561, 657, 749, 845, 949, 1049, 1185, 1313, 1441, 1573, 1709, 1877, 2025, 2185, 2361, 2529, 2709, 2901, 3101, 3305, 3505, 3713, 3917, 4157, 4397, 4637, 4865, 5121, 5377, 5637, 5917, 6197, 6485, 6761
Offset: 1
Keywords
Examples
For n=4: row 1: 3 squares - - X X X - - row 2: 5 squares - X X X X X - row 3: 7 squares X X X X X X X row 4: 7 squares X X X X X X X row 5: 7 squares X X X X X X X row 6: 5 squares - X X X X X - row 7: 3 squares - - X X X - - Total = 37 = a(4).
Links
- David Dewan, Table of n, a(n) for n = 1..10000
- David Dewan, Drawings for n=1..10
Crossrefs
Programs
-
Mathematica
Table[4*Sum[Floor[Sqrt[n^2-(k+1/2)^2]-1/2],{k,1,n-1}]+4*n-3,{n,50}]
Formula
a(n) = 4*Sum_{k=1..n-1} floor(sqrt(n^2 - (k+1/2)^2) - 1/2) + 4*n - 3.
a(n) == 1 (mod 4). - Robert FERREOL, Jan 31 2025
Comments