This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373198 #10 Jun 01 2024 18:04:28 %S A373198 1,1,2,2,1,3,1,3,2,2,4,3,2,2,2,4,1,4,3,1,4,2,4,5,1,2,3,1,3,7,3,3,2,6, %T A373198 1,3,4,3,2,4,1,7,1,3,1,8,9,2,1,3,4,1,4,4,4,4,1,3,2,2,6,8,3,1,2,10,3,5, %U A373198 1,1,5,4,3,3,3,3,6,3,5,7,1,6,1,5,2,4,5 %N A373198 Number of squarefree numbers from prime(n) to prime(n+1) - 1. %F A373198 a(n) = A061398(n) + 1. %e A373198 This is the sequence of row-lengths of A005117 treated as a triangle with row-sums A373197: %e A373198 2 %e A373198 3 %e A373198 5 6 %e A373198 7 10 %e A373198 11 %e A373198 13 14 15 %e A373198 17 %e A373198 19 21 22 %e A373198 23 26 %e A373198 29 30 %e A373198 31 33 34 35 %e A373198 37 38 39 %e A373198 41 42 %e A373198 43 46 %e A373198 47 51 %e A373198 53 55 57 58 %t A373198 Table[Length[Select[Range[Prime[n],Prime[n+1]-1],SquareFreeQ]],{n,100}] %o A373198 (Python) %o A373198 from math import isqrt %o A373198 from sympy import prime, nextprime, mobius %o A373198 def A373198(n): %o A373198 p = prime(n) %o A373198 q = nextprime(p) %o A373198 r = isqrt(p-1)+1 %o A373198 return sum(mobius(k)*((q-1)//k**2) for k in range(r,isqrt(q-1)+1))+sum(mobius(k)*((q-1)//k**2-(p-1)//k**2) for k in range(1,r)) # _Chai Wah Wu_, Jun 01 2024 %Y A373198 Counting all numbers (not just squarefree) gives A001223, sum A371201. %Y A373198 For composite instead of squarefree we have A046933. %Y A373198 For squarefree numbers (A005117) between primes: %Y A373198 - sum is A373197 %Y A373198 - length is A373198 (this sequence) = A061398 - 1 %Y A373198 - min is A000040 %Y A373198 - max is A112925, opposite A112926 %Y A373198 For squarefree numbers between powers of two: %Y A373198 - sum is A373123 %Y A373198 - length is A077643, partial sums A143658 %Y A373198 - min is A372683, delta A373125, indices A372540, firsts of A372475 %Y A373198 - max is A372889, delta A373126 %Y A373198 For primes between powers of two: %Y A373198 - sum is A293697 (except initial terms) %Y A373198 - length is A036378 %Y A373198 - min is A104080 or A014210, indices A372684 (firsts of A035100) %Y A373198 - max is A014234, delta A013603 %Y A373198 Cf. A372473 (firsts of A372472), A372541 (firsts of A372433). %Y A373198 Cf. A049093, A049094, A076259, A077641. %K A373198 nonn %O A373198 1,3 %A A373198 _Gus Wiseman_, May 29 2024