This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373199 #12 Jun 09 2024 22:15:55 %S A373199 1,2,13,68,241,6278,61921,311759,2530539 %N A373199 Least k such that the k-th maximal run of nonsquarefree numbers has length n. Position of first appearance of n in A053797. %C A373199 A run of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by one. The a(n)-th run of nonsquarefree numbers begins with A045882 = A051681, subset of A053806. %H A373199 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a> %e A373199 The maximal runs of nonsquarefree numbers begin: %e A373199 4 %e A373199 8 9 %e A373199 12 %e A373199 16 %e A373199 18 %e A373199 20 %e A373199 24 25 %e A373199 27 28 %e A373199 32 %e A373199 36 %e A373199 40 %e A373199 44 45 %e A373199 48 49 50 %e A373199 52 %e A373199 54 %e A373199 56 %e A373199 60 %e A373199 63 64 %e A373199 The a(n)-th rows are: %e A373199 4 %e A373199 8 9 %e A373199 48 49 50 %e A373199 242 243 244 245 %e A373199 844 845 846 847 848 %e A373199 For example, (48, 49, 50) is the first maximal run of 3 nonsquarefree numbers, so a(3) = 13. %t A373199 seq=Length/@Split[Select[Range[10000],!SquareFreeQ[#]&],#1+1==#2&]; %t A373199 spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[y,Range[#]]&]; %t A373199 Table[Position[seq,i][[1,1]],{i,spna[seq]}] %Y A373199 For composite instead of nonsquarefree we have A073051. %Y A373199 The version for squarefree runs is A373128. %Y A373199 For prime instead of nonsquarefree we have A373400. %Y A373199 A005117 lists the squarefree numbers, first differences A076259. %Y A373199 A013929 lists the nonsquarefree numbers, first differences A078147. %Y A373199 Cf. A007674, A020754, A045882, A120992, A061398, A061399, A068781, A101836, A251092, A294242, A373410, A373412. %K A373199 nonn,more %O A373199 1,2 %A A373199 _Gus Wiseman_, Jun 08 2024