This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373205 #28 Jun 04 2024 07:40:03 %S A373205 1,51,57,101,151,176,201,301,351,401,501,551,576,601,625,701,751,801, %T A373205 901,951,976,1001,1376,2001,2057,2751,3001,4001,4193,4751,5001,5376, %U A373205 6001,6249,6751,7001,8001,8751,9001,9375,9376,10001,10751,11001,12001,13001 %N A373205 Numbers m such that m^m == m (mod 10^(len(m) + 1)), where len(m) is the number of digits of m (A055642). %C A373205 By definition, the present sequence is a subsequence of A082576. %C A373205 For each integer r >= 2 this sequence contains 10^r + 1. %C A373205 All terms > 1 end in 01, 25, 49, 51, 57, 75, 76, or 93. %H A373205 <a href="/index/Ar#automorphic">Index entries for sequences related to automorphic numbers</a> %e A373205 51 is a term since 51 is a 2-digit number and 51^51 == 5051 (mod 10^4) and thus 51^51 == 51 (mod 10^(2 + 1)). %o A373205 (PARI) for (len_m = 1, 5, for (m = 10^(len_m - 1), 10^len_m - 1, if (m == Mod(m, 10^(len_m + 1))^m, print1(m, ", ")))) %o A373205 (Python) %o A373205 from itertools import count %o A373205 def A373205_gen(): # generator of terms %o A373205 for i in count(0,100): %o A373205 for j in (1, 25, 49, 51, 57, 75, 76, 93): %o A373205 m = i+j %o A373205 if pow(m,m,10*10**(len(str(m)))) == m: %o A373205 yield m %o A373205 A373205_list = list(islice(A373205_gen(),20)) # _Chai Wah Wu_, Jun 02 2024 %Y A373205 Cf. A055642, A082576, A373206. %K A373205 nonn,base %O A373205 1,2 %A A373205 _Marco RipĂ _, May 27 2024