This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373206 #33 Aug 01 2025 01:45:43 %S A373206 1,751,1001,2001,2751,3001,4001,5001,5376,6001,6751,7001,8001,9001, %T A373206 10001,18751,20001,30001,40001,50001,58751,60001,69376,70001,80001, %U A373206 90001,98751,100001,110001,120001,130001,138751,140001,150001,160001,170001,180001,190001 %N A373206 Numbers m such that m^m == m (mod 10^(len(m) + 2)), where len(m) is the number of digits of m (A055642). %C A373206 By definition, this sequence is a subsequence of A082576 and also a subsequence of A373205. %C A373206 For each integer r >= 3 the sequence contains 10^r + 1. %C A373206 All terms > 9001 end in 0001 (e.g., 10001), 0625 (e.g., 390625), 1249 (e.g., 781249), 8751 (e.g., 18751), 9376 (e.g., 69376), and possibly in 4193, 7057, or 9375. %H A373206 Harvey P. Dale, <a href="/A373206/b373206.txt">Table of n, a(n) for n = 1..351</a> (All terms up to 20 million) %H A373206 <a href="/index/Ar#automorphic">Index entries for sequences related to automorphic numbers</a> %F A373206 For all terms m, m^m == m (mod 10^(floor(log_10(m)) + 3)). %e A373206 751 is a term since 751 is a 3-digit number and 751^751 == 500751 (mod 10^6) and thus 751^751 == 751 (mod 10^(3 + 2)). %t A373206 Select[Range[200000],PowerMod[#,#,10^(IntegerLength[#]+2)]==#&] (* _Harvey P. Dale_, Dec 05 2024 *) %o A373206 (PARI) for (len_m = 1, 5, for (m = 10^(len_m - 1), 10^len_m - 1, if (m == Mod(m, 10^(len_m + 1))^m, print1(m, ", ")))); %o A373206 (Python) %o A373206 from itertools import count %o A373206 def A373206_gen(): # generator of terms %o A373206 yield from (1, 751, 1001, 2001, 2751, 3001, 4001, 5001, 5376, 6001, 6751, 7001, 8001, 9001) %o A373206 for i in count(10000,10000): %o A373206 for j in (1,625,1249,4193,7057,8751,9375,9376): %o A373206 m = i+j %o A373206 if pow(m,m,100*10**(len(str(m)))) == m: %o A373206 yield m %o A373206 A373206_list = list(islice(A373206_gen(),20)) # _Chai Wah Wu_, Jun 02 2024 %Y A373206 Cf. A055642, A082576, A373205. %K A373206 nonn,base %O A373206 1,2 %A A373206 _Marco RipĂ _, May 28 2024