A373209 Numbers k such that k^2 - 1 and k^2 + 1 have 8 divisors each.
68, 112, 128, 162, 200, 212, 252, 294, 318, 336, 338, 372, 448, 450, 498, 502, 542, 578, 592, 598, 612, 648, 672, 678, 708, 752, 762, 808, 812, 852, 878, 888, 938, 952, 992, 996, 1012, 1038, 1098, 1102, 1116, 1122, 1188, 1202, 1212, 1248, 1258, 1328, 1362, 1380
Offset: 1
Keywords
Examples
68 is a term: both 68^2 - 1 = 4623 = 3 * 23 * 67 and 68^2 + 1 = 4625 = 5^3 * 37 have 8 divisors.
Formula
{ k : tau(k^2 - 1) = tau(k^2 + 1) = 8}, where tau() is the number of divisors function, A000005.
Comments