cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373209 Numbers k such that k^2 - 1 and k^2 + 1 have 8 divisors each.

Original entry on oeis.org

68, 112, 128, 162, 200, 212, 252, 294, 318, 336, 338, 372, 448, 450, 498, 502, 542, 578, 592, 598, 612, 648, 672, 678, 708, 752, 762, 808, 812, 852, 878, 888, 938, 952, 992, 996, 1012, 1038, 1098, 1102, 1116, 1122, 1188, 1202, 1212, 1248, 1258, 1328, 1362, 1380
Offset: 1

Views

Author

Jon E. Schoenfield, Jun 21 2024

Keywords

Comments

Among the first 10000 terms (from a(1) = 68 through a(10000) = 697578), k^2 - 1 and k^2 + 1 are each the product of three distinct primes, except for
125 terms for which k^2 + 1 = 5^3 times a prime
6 terms for which k^2 + 1 = 13^3 times a prime
1 terms for which k^2 + 1 = 17^3 times a prime
1 terms for which k^2 + 1 = 29^3 times a prime, and
4 terms for which k^2 - 1 = p^3 * (p^3 +/- 2) (with p = 19, 29, 37, 83, respectively).
The first term for which both k^2 - 1 and k^2 + 1 are of the form p^3 * q is k = 41457661182: k^2 - 1 = 3461^3 * 41457661183, while k^2 + 1 = 5^3 * 13749901365452077097.

Examples

			68 is a term: both 68^2 - 1 = 4623 = 3 * 23 * 67 and 68^2 + 1 = 4625 = 5^3 * 37 have 8 divisors.
		

Crossrefs

Formula

{ k : tau(k^2 - 1) = tau(k^2 + 1) = 8}, where tau() is the number of divisors function, A000005.