This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373216 #21 Jun 28 2025 09:14:00 %S A373216 1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1, %T A373216 1,3,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1, %U A373216 1,1,1,3,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,3 %N A373216 Expansion of Sum_{k>=0} x^(6^k) / (1 - x^(6^k)). %H A373216 Seiichi Manyama, <a href="/A373216/b373216.txt">Table of n, a(n) for n = 1..10000</a> %F A373216 G.f. A(x) satisfies A(x) = x/(1 - x) + A(x^6). %F A373216 a(6*n+1) = a(6*n+2) = ... = (6*n+5) = 1 and a(6*n+6) = 1 + a(n+1) for n >= 0. %F A373216 a(n) = A122841(n) + 1. %F A373216 G.f.: Sum_{i>=1, j>=0} x^(i*6^j). - _Seiichi Manyama_, Mar 23 2025 %F A373216 a(n) = A122841(6*n). - _R. J. Mathar_, Jun 28 2025 %o A373216 (PARI) a(n) = valuation(n, 6)+1; %Y A373216 Cf. A001511, A051064, A055457, A115362, A373217. %Y A373216 Cf. A122841, A373220. %K A373216 nonn %O A373216 1,6 %A A373216 _Seiichi Manyama_, May 28 2024