cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373216 Expansion of Sum_{k>=0} x^(6^k) / (1 - x^(6^k)).

This page as a plain text file.
%I A373216 #21 Jun 28 2025 09:14:00
%S A373216 1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,
%T A373216 1,3,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,
%U A373216 1,1,1,3,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,3
%N A373216 Expansion of Sum_{k>=0} x^(6^k) / (1 - x^(6^k)).
%H A373216 Seiichi Manyama, <a href="/A373216/b373216.txt">Table of n, a(n) for n = 1..10000</a>
%F A373216 G.f. A(x) satisfies A(x) = x/(1 - x) + A(x^6).
%F A373216 a(6*n+1) = a(6*n+2) = ... = (6*n+5) = 1 and a(6*n+6) = 1 + a(n+1) for n >= 0.
%F A373216 a(n) = A122841(n) + 1.
%F A373216 G.f.: Sum_{i>=1, j>=0} x^(i*6^j). - _Seiichi Manyama_, Mar 23 2025
%F A373216 a(n) = A122841(6*n). - _R. J. Mathar_, Jun 28 2025
%o A373216 (PARI) a(n) = valuation(n, 6)+1;
%Y A373216 Cf. A001511, A051064, A055457, A115362, A373217.
%Y A373216 Cf. A122841, A373220.
%K A373216 nonn
%O A373216 1,6
%A A373216 _Seiichi Manyama_, May 28 2024