This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373225 #30 Jun 09 2024 13:21:13 %S A373225 2,11,23,31,47,59,67,103,127,419,431,439,467,1259,1279,1303,26947, %T A373225 615883,616787,617051,617059,617087,617647,617731,617819,617879, %U A373225 618463,618559,618587,618671,620467,623867,623879,624199,624271,624311,624319,624331,626887,626987,627071 %N A373225 Primes p = prime(k) such that 0 = Sum_{j=1..k} T(k, j) where T(n, k) = K(prime(n), prime(k)) * K(prime(k), prime(n)) and K is the Kronecker symbol. %C A373225 It appears that, apart from 1st term 2, this is a subsequence of A096448. - _Michel Marcus_, May 30 2024 %C A373225 For n > 2, the sequence is exactly those terms p in A096448 with p == 3 (mod 4); see linked proof. - _Michael S. Branicky_, May 30 2024 %H A373225 Michel Marcus, <a href="/A373225/b373225.txt">Table of n, a(n) for n = 1..74</a> %H A373225 Michael S. Branicky, <a href="/A373225/a373225.txt">Proof for A373225</a> %e A373225 The corresponding indices in A373224 start: 1, 5, 9, 11, 15, 17, 19, 27, 31, 81, 83, 85, 91, 205, 207, 213. %e A373225 T(k, j) defined as in the name. 11 is a term because 11 = prime(5) and Sum_{j=1..5} T(k, j) = 1 + (-1) + 1 + (-1) + 0 = 0. %p A373225 A := select(n -> A373224(n) = 0, [seq(1..500)]): %p A373225 seq(ithprime(a), a in A); %Y A373225 Cf. A096448, A373224, A373223. %K A373225 nonn %O A373225 1,1 %A A373225 _Peter Luschny_, May 29 2024 %E A373225 a(17) onward from _Michel Marcus_, May 30 2024