cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373269 T(n,k) is the number of different multiplicities in the k-th partition of n in graded reverse lexicographic ordering (A080577).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 1
Offset: 1

Views

Author

Olivier Gérard, May 29 2024

Keywords

Comments

The regular array for partitions of n of length k is A373270.
Row sums are A373271.

Examples

			Array begins:
  1,
  1,1,
  1,1,1,
  1,1,1,2,1,
  1,1,1,2,2,2,1,
  1,1,1,2,1,1,2,1,1,2,1,
  1,1,1,2,1,1,2,2,2,2,2,2,2,2,1
  ...
T(10,34) is the first term with value 3. It corresponds to partition 3+2+2+1+1+1 of 10, which has three different multiplicities.
		

Programs

  • Mathematica
    Flatten@Table[
      Map[Length[Union[Length /@ Split[#]]] &, IntegerPartitions[n]], {n,
       1, 20}]