A373271 a(n) = sum for all integer partitions of n of the number of distinct multiplicities in each partition.
1, 2, 3, 6, 10, 14, 24, 34, 49, 70, 103, 134, 195, 258, 347, 461, 624, 796, 1066, 1358, 1763, 2250, 2903, 3631, 4644, 5805, 7309, 9083, 11381, 13998, 17428, 21369, 26336, 32174, 39451, 47847, 58399, 70610, 85590, 103077, 124462, 149169, 179368, 214300, 256397
Offset: 1
Keywords
Examples
Example for n=20: the partition 20=4+3+3+3+3+2+1+1 has multiplicities 1, 4, 1, 2 for the parts 4,3,2,1 listed in descending order. It has 3 different multiplicities (1, 2 and 4) and contributes 3 to a(20) = 1358.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
Table[Plus @@ Table[Plus @@ Map[Length[Union[Length /@ Split[#]]] &, IntegerPartitions[n, {k}]], {k, 1, n}], {n, 1, 40}]
Comments