This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373272 #36 Jun 01 2024 21:03:24 %S A373272 1,1,2,1,1,3,1,3,3,4,1,2,6,4,5,1,4,7,6,5,6,1,3,10,11,10,6,7,1,5,11,16, %T A373272 14,12,7,8,1,4,15,20,22,14,14,8,9,1,6,16,26,28,29,20,16,9,10,1,5,20, %U A373272 34,41,40,34,23,18,10,11,1,7,22,42,50,54,44,35,26,20,11,12,1,6,26,52,69,75,68,54,44,29,22,12,13 %N A373272 Triangle read by rows: T(n,k) = sum of all distinct multiplicities in the integer partitions of n with k parts. %H A373272 Alois P. Heinz, <a href="/A373272/b373272.txt">Rows n = 1..200, flattened</a> (first 40 rows from Olivier Gérard) %e A373272 Array begins: %e A373272 1; %e A373272 1, 2; %e A373272 1, 1, 3; %e A373272 1, 3, 3, 4; %e A373272 1, 2, 6, 4, 5; %e A373272 1, 4, 7, 6, 5, 6; %e A373272 1, 3, 10, 11, 10, 6, 7; %e A373272 1, 5, 11, 16, 14, 12, 7, 8; %e A373272 1, 4, 15, 20, 22, 14, 14, 8, 9; %e A373272 1, 6, 16, 26, 28, 29, 20, 16, 9, 10; %e A373272 ... %e A373272 T(6,3) = 7 because the partitions of 6 into 3 parts are 4+1+1, 3+2+1, 2+2+2, %e A373272 the multiplicities are (1,2), (1,1,1), (3), %e A373272 the distinct multiplicities are respectively (1,2), (1), (3), %e A373272 contributing 3+1+3 = 7. %t A373272 Flatten[Table[ %t A373272 Plus @@@ %t A373272 Table[Map[Plus @@ Union[Length /@ Split[#]] &, %t A373272 IntegerPartitions[n, {k}]], {k, 1, n}], {n, 1, 20}]] %Y A373272 Columns k=1-2 give: A057427, A028242. %Y A373272 Main diagonal gives A000027. %Y A373272 Row sums are A373273. %Y A373272 T(2n,n) gives A373104. %K A373272 nonn,tabl %O A373272 1,3 %A A373272 _Olivier Gérard_, May 29 2024