This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373285 #28 Jun 22 2024 15:47:59 %S A373285 528,1056,1275,1584,2112,2275,2565,3168,3213,3825,3850,3861,4224,4590, %T A373285 4752,5152,5808,6336,6375,6688,7072,7695,7700,8448,9065,9180,9504, %U A373285 9639,10304,10878,11328,11375,11475,11583,11616,12672,12825,13376,13770,14144,14256,15400,15925,16709,16896 %N A373285 Numbers k that are composite and not a powers of a prime k such that sopf^{h+1}(k) divides sopf^{h}(k), with sopf^{0}(k)=k, for h=0..A321944(k)-1, where sopf^{h} is the h-th iteration of sopf and sopf = A008472. %e A373285 For k = 11475 = 3^3 * 5^2 * 17, sopf(k)=25 divides k and sopf(sopf(k))=5 divides sopf(k). %p A373285 f := proc (n) %p A373285 add(d, d = numtheory[factorset](n)) %p A373285 end proc: %p A373285 h := proc (n) %p A373285 option remember; %p A373285 if isprime(n) then %p A373285 1 %p A373285 else %p A373285 1+h(convert(numtheory[factorset](n), `+`)) end if: %p A373285 end proc: %p A373285 checkDivisibility := proc (n) %p A373285 local k, fk, fk1, result: %p A373285 result := true: %p A373285 fk := n; %p A373285 for k from 0 to h(n)-1 do %p A373285 fk1 := f(fk); %p A373285 if fk1 = 0 or `mod`(fk, fk1) <> 0 then %p A373285 result := false: %p A373285 break: %p A373285 end if: %p A373285 fk := fk1: %p A373285 end do: %p A373285 return result: %p A373285 end proc: %p A373285 g := proc (n) %p A373285 nops(numtheory[factorset](n)): %p A373285 end proc: %p A373285 findNumbers := proc (upper_limit) %p A373285 local n, results: %p A373285 results := []: %p A373285 for n from 2 to upper_limit do %p A373285 if checkDivisibility(n) and 2 <= g(n) then %p A373285 results := [op(results), n]: %p A373285 end if: %p A373285 end do: %p A373285 return results: %p A373285 end proc: %p A373285 upper_limit := 10000: %p A373285 numbers := findNumbers(upper_limit); %t A373285 s[n_] := DivisorSum[n, # &, PrimeQ[#] &]; q[n_] := !PrimePowerQ[n] && AllTrue[Ratios@ Reverse@ FixedPointList[s, n], IntegerQ]; Select[Range[2, 17000], q] (* _Amiram Eldar_, May 30 2024 *) %Y A373285 Cf. A008472 (sopf), A321944. %K A373285 nonn %O A373285 1,1 %A A373285 _Rafik Khalfi_, May 30 2024