cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373288 T(n, k) is the total number of symmetric peaks in all partitions of n with exactly k blocks, n >= 3, 2 <= k <= n-1.

This page as a plain text file.
%I A373288 #101 Jun 07 2024 07:25:55
%S A373288 1,3,2,8,12,3,20,54,30,4,48,215,205,60,5,112,799,1185,580,105,6,256,
%T A373288 2842,6230,4585,1365,168,7,576,9812,30828,32256,14140,2828,252,8,1280,
%U A373288 33165,146355,210378,128037,37170,5334,360,9,2816,110361,674535,1301860,1060815,420756,86730,9360,495,10
%N A373288 T(n, k) is the total number of symmetric peaks in all partitions of n with exactly k blocks, n >= 3, 2 <= k <= n-1.
%H A373288 W. Asakly and Noor Kezil, <a href="https://arxiv.org/abs/2401.01687">Counting symmetric and non-symmetric peaks in a set partition</a>, arXiv:2401.01687 [math.CO], 2024.
%F A373288 T(n,k) = (k-1) * Stirling2(n-1, k) + Sum_{j=2..k} binomial(j, 2) * Sum_{i=3..n-k} j^(i-3) * Stirling2(n-i, k).
%e A373288 The triangle T(n, k) begins:
%e A373288    3|   1
%e A373288    4|   3      2
%e A373288    5|   8     12      3
%e A373288    6|  20     54     30      4
%e A373288    7|  48    215    205     60      5
%e A373288    8| 112    799   1185    580    105      6
%e A373288    9| 256   2842   6230   4585   1365    168      7
%e A373288   10| 576   9812  30828  32256  14140   2828    252      8
%e A373288 .
%e A373288 T(5,3) represents the partitions of the set {1,2,3,4,5} into 3 blocks:
%e A373288 The canonical form of a set partition of [n] is an n-tuple indicating the block in which each integer occurs. The symmetric peaks in the canonical sequential form are listed:
%e A373288   (1, 2, 1, 1, 3) -> 1 symmetric peak   (1, 2, 1)
%e A373288   (1, 2, 1, 3, 1) -> 2 symmetric peaks, (1, 2, 1) and (1, 3, 1)
%e A373288   (1, 2, 1, 2, 3) -> 1 symmetric peak,  (1, 2, 1)
%e A373288   (1, 2, 1, 3, 2) -> 1 symmetric peak,  (1, 2, 1)
%e A373288   (1, 2, 1, 3, 3) -> 1 symmetric peak,  (1, 2, 1)
%e A373288   (1, 2, 1, 3, 1) -> 2 symmetric peaks, (1, 2, 1) and (1, 3, 1)
%e A373288   (1, 2, 2, 3, 2) -> 1 symmetric peak,  (2, 3, 2)
%e A373288   (1, 2, 3, 2, 1) -> 1 symmetric peak,  (2, 3, 2)
%e A373288   (1, 2, 3, 2, 2) -> 1 symmetric peak,  (2, 3, 2)
%e A373288   (1, 2, 3, 2, 3) -> 1 symmetric peak,  (2, 3, 2).
%p A373288 T := (n, k) -> (k-1) * Stirling2(n-1, k) + add(binomial(j, 2) * add(j^(i-3) * Stirling2(n-i, k),i=3..n-k), j = 2..k): seq(print(seq(T(n, k), k = 2..n-1)), n = 3..10);  # _Peter Luschny_, Jun 06 2024
%t A373288 T[n_, k_] := (k-1) * StirlingS2[n-1, k] + Sum[Binomial[j, 2] * Sum[j^(i-3) * StirlingS2[n-i, k], {i, 3, n-k}], {j, 2, k}];
%t A373288 Table[T[n, k], {n, 3, 12}, {k, 2, n-1}] // Flatten
%o A373288 (PARI) T(n, k) = (k-1) * stirling(n-1, k, 2) + sum(j=2, k, binomial(j, 2) * sum(i=3, n-k, j^(i-3) * stirling(n-i, k, 2))); \\ _Michel Marcus_, Jun 06 2024
%Y A373288 Cf. A008277 (Stirling2).
%Y A373288 Cf. A001792 (1st column), A027480 (subdiagonal).
%K A373288 nonn,tabl
%O A373288 3,2
%A A373288 _W. Asakly_, Jun 01 2024