cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373322 The number of indecomposable summands, counted with multiplicity, in tensor powers of the vector representation of SL2 in characteristic 2.

This page as a plain text file.
%I A373322 #21 Jun 23 2024 21:26:28
%S A373322 1,1,1,3,3,9,9,29,29,99,99,351,351,1273,1273,4679,4679,17341,17341,
%T A373322 64637,64637,242019,242019,909789,909789,3432751,3432751,12998311,
%U A373322 12998311,49387289,49387289,188261329,188261329,719860679,719860679,2760525963,2760525963,10614508493,10614508493
%N A373322 The number of indecomposable summands, counted with multiplicity, in tensor powers of the vector representation of SL2 in characteristic 2.
%C A373322 In characteristic zero the analogous numbers are A001405.
%H A373322 K. Coulembier, P. Etingof, V. Ostrik, and D. Tubbenhauer, <a href="https://arxiv.org/abs/2405.16786">Fractal behavior of tensor powers of the two dimensional space in prime characteristic</a>, arXiv:2405.16786 [math.RT], 2024.
%H A373322 M. Larsen, <a href="https://arxiv.org/abs/2405.16015">Bounds for SL2-indecomposables in tensor powers of the natural representation in characteristic 2</a>, arXiv:2405.16015 [math.RT], 2024.
%H A373322 Daniel Tubbenhauer, <a href="https://github.com/dtubbenhauer/sl2-charp">GitHub page</a>
%F A373322 a(0) = a(1) = 1, and for n>1: a(2n-1) = a(2n) = Sum_{k=0..n-1} binomial(n-1,k)*2^(n-1-k)*a(k).
%F A373322 a(n) ~ h(n)*n^(t)*2^n for t=1/2log_2(3/2)-1 approx. -0.707 and h(n) a bounded function. The constant t is A153460 - 2.
%t A373322 a[0|1] = 1; a[n_] := a[n] = With[{m = Ceiling[n/2]}, Sum[Binomial[m-1, k] 2^(m-1-k) a[k], {k, 0, m-1}]]; Table[a[n], {n, 0, 40}]
%o A373322 (PARI) a(n) = if (n<=1, 1, my(m=ceil(n/2)); sum(k=0, m-1, binomial(m-1,k)*2^(m-1-k)*a(k))); \\ _Michel Marcus_, Jun 01 2024
%Y A373322 Cf. A001405 (for characteristic zero), A153460.
%K A373322 nonn
%O A373322 0,4
%A A373322 _Daniel Tubbenhauer_, Jun 01 2024