This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373345 #45 Sep 13 2024 15:56:35 %S A373345 1,2,3,3,2,4,4,2,4,3,5,5,2,5,3,5,4,5,4,3,6,6,2,6,3,6,4,6,4,3,6,5,6,5, %T A373345 3,6,5,4,7,7,2,7,3,7,4,7,4,3,7,5,7,5,3,7,5,4,7,6,7,6,3,7,6,4,7,6,5,7, %U A373345 6,5,4,8,8,2,8,3,8,4,8,4,3,8,5,8,5,3,8,5,4,8,6 %N A373345 Irregular triangle read by rows where row n lists (in decreasing order) the elements of the Schreier set encoded by A371176(n). %C A373345 A Schreier set is a subset of the positive integers with cardinality less than or equal to the minimum element in the set. %C A373345 Each term k of A371176 can be put into a one-to-one correspondence with a Schreier set by interpreting the 1-based position of the ones in the binary expansion of k (where position 1 corresponds to the least significant bit) as the elements of the corresponding Schreier set (see A371176 and Bird link). %C A373345 See A373359 for the elements in each set arranged in increasing order. %C A373345 The number of sets having maximum element m is A000045(m). %H A373345 Paolo Xausa, <a href="/A373345/b373345.txt">Table of n, a(n) for n = 1..10000</a> (rows 1..2261 of the triangle, flattened). %H A373345 Alistair Bird, <a href="https://outofthenormmaths.wordpress.com/2012/05/13/jozef-schreier-schreier-sets-and-the-fibonacci-sequence/">Jozef Schreier, Schreier sets and the Fibonacci sequence</a>, Out Of The Norm blog, May 13 2012. %F A373345 T(n,k) = A373557(n,k) - 1. %e A373345 Triangle begins: %e A373345 Corresponding Schreier %e A373345 n A371176(n) bin(A371176(n)) set (this sequence) %e A373345 ------------------------------------------------------- %e A373345 1 1 1 {1} %e A373345 2 2 10 {2} %e A373345 3 4 100 {3} %e A373345 4 6 110 {3, 2} %e A373345 5 8 1000 {4} %e A373345 6 10 1010 {4, 2} %e A373345 7 12 1100 {4, 3} %e A373345 8 16 10000 {5} %e A373345 9 18 10010 {5, 2} %e A373345 10 20 10100 {5, 3} %e A373345 11 24 11000 {5, 4} %e A373345 12 28 11100 {5, 4, 3} %e A373345 ... %t A373345 Join[{{1}}, Map[Reverse[PositionIndex[Reverse[IntegerDigits[#, 2]]][1]] &, Select[Range[2, 200, 2], DigitCount[#, 2, 1] <= IntegerExponent[#, 2] + 1 &]]] %Y A373345 Cf. A000045, A371176, A373359, A373556, A373557. %Y A373345 Cf. A007895 (conjectured row lengths), A072649 (first column), A373346 (row sums), A373347. %K A373345 nonn,tabf,easy,base %O A373345 1,2 %A A373345 _Paolo Xausa_, Jun 01 2024