cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373349 Twin primes where both the prime and its twin have prime reversals.

This page as a plain text file.
%I A373349 #28 Jul 02 2024 08:23:37
%S A373349 3,5,7,11,13,71,73,149,151,179,181,311,313,1031,1033,1151,1153,1229,
%T A373349 1231,3299,3301,3371,3373,3389,3391,3467,3469,3851,3853,7457,7459,
%U A373349 7949,7951,9011,9013,9437,9439,10007,10009,10067,10069,10457,10459,10499,10501,10889
%N A373349 Twin primes where both the prime and its twin have prime reversals.
%H A373349 Robert Israel, <a href="/A373349/b373349.txt">Table of n, a(n) for n = 1..10001</a>
%p A373349 R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
%p A373349 q:= p-> andmap(isprime, [p, R(p)]) and ormap(
%p A373349     t-> andmap(isprime, [p+t, R(p+t)]), [-2, +2]):
%p A373349 select(q, [$2..12000])[];  # _Alois P. Heinz_, Jun 06 2024
%o A373349 (PARI) isrevp(p) = isprime(p) && isprime(fromdigits(Vecrev(digits(p))));
%o A373349 isok(p) = isprime(p) && ((isprime(p+2) && isrevp(p+2)) || (isprime(p-2) &&  isrevp(p-2))) && isrevp(p); \\ _Michel Marcus_, Jun 06 2024
%Y A373349 Cf. A001097, A007500.
%Y A373349 Cf. A004086.
%K A373349 nonn,base
%O A373349 1,1
%A A373349 _Thomas Otten_, Jun 01 2024