A373359 Irregular triangle read by rows where row n lists (in increasing order) the elements of the Schreier set encoded by A371176(n).
1, 2, 3, 2, 3, 4, 2, 4, 3, 4, 5, 2, 5, 3, 5, 4, 5, 3, 4, 5, 6, 2, 6, 3, 6, 4, 6, 3, 4, 6, 5, 6, 3, 5, 6, 4, 5, 6, 7, 2, 7, 3, 7, 4, 7, 3, 4, 7, 5, 7, 3, 5, 7, 4, 5, 7, 6, 7, 3, 6, 7, 4, 6, 7, 5, 6, 7, 4, 5, 6, 7, 8, 2, 8, 3, 8, 4, 8, 3, 4, 8, 5, 8, 3, 5, 8, 4, 5, 8, 6, 8
Offset: 1
Examples
Triangle begins: Corresponding Schreier n A371176(n) bin(A371176(n)) set (this sequence) ------------------------------------------------------- 1 1 1 {1} 2 2 10 {2} 3 4 100 {3} 4 6 110 {2, 3} 5 8 1000 {4} 6 10 1010 {2, 4} 7 12 1100 {3, 4} 8 16 10000 {5} 9 18 10010 {2, 5} 10 20 10100 {3, 5} 11 24 11000 {4, 5} 12 28 11100 {3, 4, 5} ...
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000 (rows 1..2261 of the triangle, flattened).
- Alistair Bird, Jozef Schreier, Schreier sets and the Fibonacci sequence, Out Of The Norm blog, May 13 2012.
Crossrefs
Programs
-
Mathematica
Join[{{1}}, Map[PositionIndex[Reverse[IntegerDigits[#, 2]]][1] &, Select[Range[2, 200, 2], DigitCount[#, 2, 1] <= IntegerExponent[#, 2] + 1 &]]]
Formula
T(n,k) = A373579(n,k) - 1.
Comments