This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373382 #9 Jun 06 2024 08:23:38 %S A373382 0,0,1,0,1,1,1,0,2,1,2,1,2,1,1,0,1,2,3,1,1,2,1,1,2,2,3,1,1,1,1,0,3,1, %T A373382 3,2,1,3,3,1,1,1,1,2,1,1,2,1,2,2,2,2,1,3,1,1,4,1,4,1,1,1,1,0,1,3,4,1, %U A373382 1,3,1,2,1,1,1,3,1,3,1,1,4,1,3,1,1,1,1,2,1,1,1,1,2,2,1,1,1,2,4,2,1,2,3,2,4 %N A373382 a(n) = gcd(A329697(n), A331410(n)), where A329697, A331410 give the number of iterations needed to reach a power of 2, when using the map n -> n-(n/p), or respectively, n -> n+(n/p), where p is the largest prime factor of n. %C A373382 As A329697 and A331410 are both fully additive sequences, all sequences that give the positions of multiples of some natural number k in this sequence are closed under multiplication, i.e., are multiplicative semigroups. %H A373382 Antti Karttunen, <a href="/A373382/b373382.txt">Table of n, a(n) for n = 1..100000</a> %F A373382 a(n) = gcd(A329697(n), A334861(n)) = gcd(A331410(n), A334861(n)). %F A373382 a(n) = gcd(A329697(n), A335877(n)) = gcd(A331410(n), A335877(n)). %o A373382 (PARI) %o A373382 A329697(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A329697(f[k,1]-1)))); }; %o A373382 A331410(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A331410(f[k,1]+1)))); }; %o A373382 A373382(n) = gcd(A329697(n), A331410(n)); %Y A373382 Cf. A329697, A331410, A334861, A335877. %Y A373382 Cf. also A373370. %K A373382 nonn %O A373382 1,9 %A A373382 _Antti Karttunen_, Jun 06 2024