cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373395 Number of minimum connected dominating sets in the n-triangular graph.

This page as a plain text file.
%I A373395 #15 Mar 19 2025 09:03:34
%S A373395 1,3,12,80,750,9072,134456,2359296,47829690,1100000000,28295372292,
%T A373395 804925734912,25090245516518,850408685629440,31139121093750000,
%U A373395 1224979098644774912,51523614927176684274,2307351090835290783744,109607737155696043718780,5505024000000000000000000
%N A373395 Number of minimum connected dominating sets in the n-triangular graph.
%C A373395 For n > 2, the connected domination number of the n-triangular graph is n-2.
%H A373395 G. C. Greubel, <a href="/A373395/b373395.txt">Table of n, a(n) for n = 2..385</a>
%H A373395 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConnectedDominatingSet.html">Connected Dominating Set</a>.
%H A373395 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TriangularGraph.html">Triangular Graph</a>.
%F A373395 a(2) = 1, a(n) = n*(n - 1)^(n - 3). - _Detlef Meya_, Jun 20 2024
%F A373395 E.g.f.: -(x/2)*((W(-x) + 1)^2 - 1 + x), where W(x) = Lambert W function. - _G. C. Greubel_, Mar 19 2025
%t A373395 a[2] := 1; a[n_] := n*(n - 1)^(n - 3); Table[a[n], {n, 2, 19}] (* _Detlef Meya_, Jun 20 2024 *)
%o A373395 (Magma)
%o A373395 A373395:= func< n | n eq 2 select 1 else n*(n-1)^(n-3) >;
%o A373395 [A373395(n): n in [2..30]]; // _G. C. Greubel_, Mar 19 2025
%o A373395 (SageMath)
%o A373395 def A373395(n): return 1 if n==2 else n*(n-1)^(n-3)
%o A373395 print([A373395(n) for n in range(2,31)]) # _G. C. Greubel_, Mar 19 2025
%K A373395 nonn
%O A373395 2,2
%A A373395 _Eric W. Weisstein_, Jun 03 2024
%E A373395 a(9) and beyond from _Detlef Meya_, Jun 20 2024