This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373399 #16 Jun 28 2024 09:30:19 %S A373399 1,2,1,4,2,5,1,8,4,2,5,9,5,11,1,16,8,4,9,18,2,5,11,17,9,21,5,19,11,23, %T A373399 1,32,16,8,17,4,18,9,19,34,18,2,21,37,5,11,23,33,17,37,9,38,21,5,11, %U A373399 35,19,43,11,39,23,47,1,64,32,16,33,8,34,17,35,68,4 %N A373399 For any number m, let m* be the bi-infinite string obtained by repetition of the binary expansion of m; a(n) is the least k such that the binary expansion of n appears in k*. %H A373399 Rémy Sigrist, <a href="/A373399/b373399.txt">Table of n, a(n) for n = 1..8191</a> %H A373399 Rémy Sigrist, <a href="/A373399/a373399.gp.txt">PARI program</a> %H A373399 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A373399 a(n) <= n with equality iff n is a power of 2. %F A373399 a(2^k - 1) = 1 for any k > 0. %e A373399 The first terms, in decimal and in binary, are: %e A373399 n a(n) bin(n) bin(a(n)) %e A373399 -- ---- ------ --------- %e A373399 1 1 1 1 %e A373399 2 2 10 10 %e A373399 3 1 11 1 %e A373399 4 4 100 100 %e A373399 5 2 101 10 %e A373399 6 5 110 101 %e A373399 7 1 111 1 %e A373399 8 8 1000 1000 %e A373399 9 4 1001 100 %e A373399 10 2 1010 10 %e A373399 11 5 1011 101 %e A373399 12 9 1100 1001 %e A373399 13 5 1101 101 %e A373399 14 11 1110 1011 %e A373399 15 1 1111 1 %e A373399 16 16 10000 10000 %o A373399 (PARI) \\ See Links section. %o A373399 (Python) %o A373399 def a(n): %o A373399 target = bin(n)[2:] %o A373399 for m in range(1, n): %o A373399 b = bin(m)[2:] %o A373399 mstar = b*(2*len(target)//len(b)) %o A373399 if target in mstar: %o A373399 return m %o A373399 return n %o A373399 print([a(n) for n in range(1, 74)]) # _Michael S. Branicky_, Jun 14 2024 %Y A373399 Cf. A326774, A361942, A373553. %K A373399 nonn,base %O A373399 1,2 %A A373399 _Rémy Sigrist_, Jun 04 2024