This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373400 #8 Jun 10 2024 14:59:54 %S A373400 1,3,8,23,29,33,45,98,153,188,216,262,281,366,428,589,737,1182,1830, %T A373400 1878,2190,2224,3076,3301,3384,3426,3643,3792,4521,4611,7969,8027, %U A373400 8687,12541,14356,14861,15782,17005,19025,23282,30801,31544,33607,34201,34214,38589 %N A373400 Numbers k such that the k-th maximal run of composite numbers has length different from all prior maximal runs. Sorted positions of first appearances in A176246 (or A046933 shifted). %C A373400 The unsorted version is A073051. %C A373400 A run of a sequence (in this case A002808) is an interval of positions at which consecutive terms differ by one. %H A373400 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a> %e A373400 The maximal runs of composite numbers begin: %e A373400 4 %e A373400 6 %e A373400 8 9 10 %e A373400 12 %e A373400 14 15 16 %e A373400 18 %e A373400 20 21 22 %e A373400 24 25 26 27 28 %e A373400 30 %e A373400 32 33 34 35 36 %e A373400 38 39 40 %e A373400 42 %e A373400 44 45 46 %e A373400 48 49 50 51 52 %e A373400 54 55 56 57 58 %e A373400 60 %e A373400 62 63 64 65 66 %e A373400 68 69 70 %e A373400 72 %e A373400 74 75 76 77 78 %e A373400 80 81 82 %e A373400 84 85 86 87 88 %e A373400 90 91 92 93 94 95 96 %e A373400 98 99 100 %e A373400 The a(n)-th rows are: %e A373400 4 %e A373400 8 9 10 %e A373400 24 25 26 27 28 %e A373400 90 91 92 93 94 95 96 %e A373400 114 115 116 117 118 119 120 121 122 123 124 125 126 %e A373400 140 141 142 143 144 145 146 147 148 %e A373400 200 201 202 203 204 205 206 207 208 209 210 %t A373400 t=Length/@Split[Select[Range[10000],CompositeQ],#1+1==#2&]//Most; %t A373400 Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&] %Y A373400 The unsorted version is A073051, firsts of A176246. %Y A373400 For squarefree runs we have the triple (1,3,5), firsts of A120992. %Y A373400 For prime runs we have the triple (1,2,3), firsts of A175632. %Y A373400 For squarefree antiruns we have A373128, firsts of A373127. %Y A373400 For nonsquarefree runs we have A373199 (assuming sorted), firsts of A053797. %Y A373400 For prime antiruns we have A373402, unsorted A373401, firsts of A027833. %Y A373400 For composite runs we have the triple (1,2,7), firsts of A373403. %Y A373400 A000040 lists the primes, differences A001223. %Y A373400 A002808 lists the composite numbers, differences A073783. %Y A373400 A046933 counts composite numbers between primes. %Y A373400 A065855 counts composite numbers up to n. %Y A373400 Cf. A006512, A007674, A049093, A068781, A072284, A077641, A174965, A251092, A373198, A373408, A373411. %K A373400 nonn %O A373400 1,2 %A A373400 _Gus Wiseman_, Jun 10 2024