This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373401 #13 Jun 10 2024 23:36:01 %S A373401 1,2,4,6,10,8,69,40,24,46,41,21,140,82,131,210,50,199,35,30,248,192, %T A373401 277,185,458,1053,251,325,271,645,748,815,811,1629,987,826,1967,423, %U A373401 1456,2946,1109,406,1870,1590,3681,2920,3564,6423,1426,5953,8345,12687,6846 %N A373401 Least k such that the k-th maximal antirun of prime numbers > 3 has length n. Position of first appearance of n in A027833. The sequence ends if no such antirun exists. %C A373401 The sorted version is A373402. %C A373401 For this sequence, we define an antirun to be an interval of positions at which consecutive primes differ by at least 3. %H A373401 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>. %e A373401 The maximal antiruns of prime numbers > 3 begin: %e A373401 5 %e A373401 7 11 %e A373401 13 17 %e A373401 19 23 29 %e A373401 31 37 41 %e A373401 43 47 53 59 %e A373401 61 67 71 %e A373401 73 79 83 89 97 101 %e A373401 103 107 %e A373401 109 113 127 131 137 %e A373401 139 149 %e A373401 151 157 163 167 173 179 %e A373401 The a(n)-th rows are: %e A373401 5 %e A373401 7 11 %e A373401 19 23 29 %e A373401 43 47 53 59 %e A373401 109 113 127 131 137 %e A373401 73 79 83 89 97 101 %e A373401 2269 2273 2281 2287 2293 2297 2309 %e A373401 1093 1097 1103 1109 1117 1123 1129 1151 %e A373401 463 467 479 487 491 499 503 509 521 %e A373401 For example, (19, 23, 29) is the first maximal antirun of length 3, so a(3) = 4. %t A373401 t=Length/@Split[Select[Range[4,100000],PrimeQ],#1+2!=#2&]//Most; %t A373401 spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#]]&]; %t A373401 Table[Position[t,k][[1,1]],{k,spna[t]}] %Y A373401 For composite instead of prime we have A073051. %Y A373401 For runs instead of antiruns we have the triple (4,2,1), firsts of A251092. %Y A373401 For squarefree instead of prime we have A373128, firsts of A373127. %Y A373401 The sorted version is A373402. %Y A373401 A000040 lists the primes, differences A001223. %Y A373401 A002808 lists the composite numbers, differences A073783. %Y A373401 A046933 counts composite numbers between primes. %Y A373401 Cf. A001359, A005117, A027833, A006512, A053797, A373199, A373405. %K A373401 nonn %O A373401 1,2 %A A373401 _Gus Wiseman_, Jun 09 2024