cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373408 Minimum of the n-th maximal antirun of squarefree numbers differing by more than one.

This page as a plain text file.
%I A373408 #7 Jun 07 2024 08:05:00
%S A373408 1,2,3,6,7,11,14,15,22,23,30,31,34,35,38,39,42,43,47,58,59,62,66,67,
%T A373408 70,71,74,78,79,83,86,87,94,95,102,103,106,107,110,111,114,115,119,
%U A373408 123,130,131,134,138,139,142,143,146,155,158,159,166,167,174,178,179
%N A373408 Minimum of the n-th maximal antirun of squarefree numbers differing by more than one.
%C A373408 The maximum is given by A007674.
%C A373408 An antirun of a sequence (in this case A005117) is an interval of positions at which consecutive terms differ by more than one.
%C A373408 Consists of 1 and all squarefree numbers n such that n - 1 is also squarefree.
%H A373408 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a>
%F A373408 a(1) = 1; a(n>1) = A007674(n-1) + 1.
%e A373408 Row-minima of:
%e A373408    1
%e A373408    2
%e A373408    3   5
%e A373408    6
%e A373408    7  10
%e A373408   11  13
%e A373408   14
%e A373408   15  17  19  21
%e A373408   22
%e A373408   23  26  29
%e A373408   30
%e A373408   31  33
%e A373408   34
%e A373408   35  37
%e A373408   38
%e A373408   39  41
%e A373408   42
%e A373408   43  46
%e A373408   47  51  53  55  57
%t A373408 First/@Split[Select[Range[100],SquareFreeQ],#1+1!=#2&]//Most
%Y A373408 Functional neighbors: A005381, A006512, A007674, A072284, A373127, A373410, A373411.
%Y A373408 A005117 lists the squarefree numbers, first differences A076259.
%Y A373408 A013929 lists the nonsquarefree numbers, first differences A078147.
%Y A373408 Cf. A001223, A049093, A049094, A061398, A077641, A077643, A112925, A112926, A350842, A372683, A373123.
%K A373408 nonn
%O A373408 1,2
%A A373408 _Gus Wiseman_, Jun 05 2024