This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373409 #9 Jun 12 2024 17:21:28 %S A373409 2,6,2,5,2,1,6,4,2,7,1,5,2,2,1,4,4,3,6,2,2,4,7,5,7,1,1,6,6,2,3,4,7,3, %T A373409 3,5,1,3,1,3,2,2,3,5,5,7,1,5,7,5,1,8,4,2,5,2,2,3,3,1,7,3,4,7,1,5,2,5, %U A373409 2,6,7,6,7,5,1,2,3,5,6,4,1,3,5,7,2,3,2 %N A373409 Length of the n-th maximal antirun of nonsquarefree numbers differing by more than one. %C A373409 An antirun of a sequence (in this case A013929) is an interval of positions at which consecutive terms differ by more than one. %C A373409 Conjecture: The maximum is 9, and there is no antirun of more than 9 nonsquarefree numbers. Confirmed up to 100,000,000. %H A373409 Gus Wiseman, <a href="/A373403/a373403.txt">Four statistics for runs and antiruns of prime, nonprime, squarefree, and nonsquarefree numbers</a> %e A373409 Row-lengths of: %e A373409 4 8 %e A373409 9 12 16 18 20 24 %e A373409 25 27 %e A373409 28 32 36 40 44 %e A373409 45 48 %e A373409 49 %e A373409 50 52 54 56 60 63 %e A373409 64 68 72 75 %e A373409 76 80 %e A373409 81 84 88 90 92 96 98 %e A373409 99 %e A373409 The first maximal antirun of length 9 is the following, shown with prime indices: %e A373409 6345: {2,2,2,3,15} %e A373409 6348: {1,1,2,9,9} %e A373409 6350: {1,3,3,31} %e A373409 6352: {1,1,1,1,78} %e A373409 6354: {1,2,2,71} %e A373409 6356: {1,1,4,49} %e A373409 6358: {1,5,7,7} %e A373409 6360: {1,1,1,2,3,16} %e A373409 6363: {2,2,4,26} %t A373409 Length/@Split[Select[Range[1000],!SquareFreeQ[#]&],#1+1!=#2&]//Most %Y A373409 Positions of first appearances are A373573, sorted A373574. %Y A373409 Functional neighbors: A027833, A053797, A068781, A373127, A373403, A373410, A373412. %Y A373409 A005117 lists the squarefree numbers, first differences A076259. %Y A373409 A013929 lists the nonsquarefree numbers, first differences A078147. %Y A373409 Cf. A025157, A049093, A061398, A061399, A077641, A077643, A110969, A174965, A294242, A350842, A373198. %K A373409 nonn %O A373409 1,1 %A A373409 _Gus Wiseman_, Jun 06 2024