This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373424 #17 Jun 13 2024 01:57:48 %S A373424 1,1,0,1,1,0,1,2,1,0,1,3,3,1,0,1,4,6,5,1,0,1,5,10,14,8,1,0,1,6,15,30, %T A373424 31,13,1,0,1,7,21,55,85,70,21,1,0,1,8,28,91,190,246,157,34,1,0,1,9,36, %U A373424 140,371,671,707,353,55,1,0,1,10,45,204,658,1547,2353,2037,793,89,1,0 %N A373424 Array read by ascending antidiagonals: T(n, k) = [x^k] cf(n) where cf(n) is the continued fraction (-1)^n/(~x - 1/(~x - ... 1/(~x - 1)))...) and where '~' is '-' if n is even, and '+' if n is odd, and x appears n times in the expression. %C A373424 A variant of both A050446 and A050447 which are the main entries. Differs in indexing and adds a first row to the array resp. a diagonal to the triangle. %H A373424 T. Kyle Petersen and Yan Zhuang, <a href="https://arxiv.org/abs/2403.07181">Zig-zag Eulerian polynomials</a>, arXiv:2403.07181 [math.CO], 2024. (Table 3) %e A373424 Generating functions of the rows: %e A373424 gf0 = 1; %e A373424 gf1 = -1/( x-1); %e A373424 gf2 = 1/(-x-1/(-x-1)); %e A373424 gf3 = -1/( x-1/( x-1/( x-1))); %e A373424 gf4 = 1/(-x-1/(-x-1/(-x-1/(-x-1)))); %e A373424 gf5 = -1/( x-1/( x-1/( x-1/( x-1/( x-1))))); %e A373424 gf6 = 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1)))))); %e A373424 ... %e A373424 Array A(n, k) starts: %e A373424 [0] 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... A000007 %e A373424 [1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 %e A373424 [2] 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... A000045 %e A373424 [3] 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, ... A006356 %e A373424 [4] 1, 4, 10, 30, 85, 246, 707, 2037, 5864, 16886, ... A006357 %e A373424 [5] 1, 5, 15, 55, 190, 671, 2353, 8272, 29056, 102091, ... A006358 %e A373424 [6] 1, 6, 21, 91, 371, 1547, 6405, 26585, 110254, 457379, ... A006359 %e A373424 A000027,A000330, A085461, A244881, ... %e A373424 A000217, A006322, A108675, ... %e A373424 . %e A373424 Triangle T(n, k) = A(n - k, k) starts: %e A373424 [0] 1; %e A373424 [1] 1, 0; %e A373424 [2] 1, 1, 0; %e A373424 [3] 1, 2, 1, 0; %e A373424 [4] 1, 3, 3, 1, 0; %e A373424 [5] 1, 4, 6, 5, 1, 0; %e A373424 [6] 1, 5, 10, 14, 8, 1, 0; %p A373424 row := proc(n, len) local x, a, j, ser; if irem(n, 2) = 1 then %p A373424 a := x - 1; for j from 1 to n do a := x - 1 / a od: a := a - x; else %p A373424 a := -x - 1; for j from 1 to n do a := -x - 1 / a od: a := -a - x; %p A373424 fi; ser := series(a, x, len + 2); seq(coeff(ser, x, j), j = 0..len) end: %p A373424 A := (n, k) -> row(n, 12)[k+1]: # array form %p A373424 T := (n, k) -> row(n - k, k+1)[k+1]: # triangular form %o A373424 (SageMath) %o A373424 def Arow(n, len): %o A373424 R.<x> = PowerSeriesRing(ZZ, len) %o A373424 if n == 0: return [1] + [0]*(len - 1) %o A373424 x = -x if n % 2 else x %o A373424 a = x + 1 %o A373424 for _ in range(n): %o A373424 a = x - 1 / a %o A373424 a = x - a if n % 2 else a - x %o A373424 return a.list() %o A373424 for n in range(7): print(Arow(n, 10)) %Y A373424 Cf. A050446, A050447, A276313 (main diagonal), A373353 (row sums of triangle). %Y A373424 Cf. A373423. %K A373424 nonn,tabl %O A373424 0,8 %A A373424 _Peter Luschny_, Jun 09 2024