Original entry on oeis.org
1, 1, 2, 4, 8, 17, 39, 97, 261, 756, 2344, 7738, 27070, 99946, 388085, 1579914, 6725192, 29860100, 137991971, 662439670, 3297635881, 16995183941, 90547999761, 498054983333, 2824769922669, 16500577556487, 99166469633984, 612564931889099, 3885636053023492, 25288452931575498
Offset: 0
A373423
Array read by ascending antidiagonals: T(n, k) = [x^k] cf(n) where cf(0) = 1, cf(1) = -1/(x - 1), and for n > 1 is cf(n) = ~( ~x - 1/(~x - 1/(~x - 1/(~x - 1/(~x - ... 1/(~x + 1))))...) ) where '~' is '-' if n is even, and '+' if n is odd, and x appears n times in the expression.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 1, 1, 0, 1, 4, 3, 1, 1, 0, 1, 5, 6, 5, 1, 1, 0, 1, 6, 10, 14, 8, 1, 1, 0, 1, 7, 15, 30, 31, 13, 1, 1, 0, 1, 8, 21, 55, 85, 70, 21, 1, 1, 0, 1, 9, 28, 91, 190, 246, 157, 34, 1, 1, 0, 1, 10, 36, 140, 371, 671, 707, 353, 55, 1, 1, 0
Offset: 0
Generating functions of row n:
gf0 = 1;
gf1 = - 1/( x-1);
gf2 = x + 1/(-x+1);
gf3 = x - 1/( x-1/( x+1));
gf4 = x + 1/(-x-1/(-x-1/(-x+1)));
gf5 = x - 1/( x-1/( x-1/( x-1/( x+1))));
gf6 = x + 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x+1)))));
.
Array begins:
[0] 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
[1] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[2] 1, 2, 1, 1, 1, 1, 1, 1, 1, ... A373565
[3] 1, 3, 3, 5, 8, 13, 21, 34, 55, ... A373566
[4] 1, 4, 6, 14, 31, 70, 157, 353, 793, ... A373567
[5] 1, 5, 10, 30, 85, 246, 707, 2037, 5864, ... A373568
[6] 1, 6, 15, 55, 190, 671, 2353, 8272, 29056, ... A373569
A000217, A006322, A108675, ...
A000330, A085461, A244881, ...
.
Triangle starts:
[0] 1;
[1] 1, 0;
[2] 1, 1, 0;
[3] 1, 2, 1, 0;
[4] 1, 3, 1, 1, 0;
[5] 1, 4, 3, 1, 1, 0;
[6] 1, 5, 6, 5, 1, 1, 0;
-
row := proc(n, len) local x, a, j, ser;
if n = 0 then a := -1 elif n = 1 then a := -1/(x - 1) elif irem(n, 2) = 1 then
a := x + 1; for j from 1 to n-1 do a := x - 1 / a od: else
a := -x + 1; for j from 1 to n-1 do a := -x - 1 / a od: fi;
ser := series((-1)^(n-1)*a, x, len + 2); seq(coeff(ser, x, j), j = 0..len) end:
A := (n, k) -> row(n, 12)[k+1]: # array form
T := (n, k) -> row(n - k, k+1)[k+1]: # triangular form
seq(lprint([n], row(n, 9)), n = 0..9);
-
def Arow(n, len):
R. = PowerSeriesRing(ZZ, len)
if n == 0: return [1] + [0]*(len - 1)
if n == 1: return [1]*(len - 1)
x = x if n % 2 == 1 else -x
a = x + 1
for _ in range(n - 1):
a = x - 1 / a
if n % 2 == 0: a = -a
return a.list()
for n in range(8): print(Arow(n, 9))
Showing 1-2 of 2 results.