This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373427 #8 Jun 13 2024 08:31:33 %S A373427 1,0,1,0,1,1,0,2,5,4,1,0,6,29,45,30,9,1,0,24,218,553,629,366,112,17,1, %T A373427 0,120,1954,7781,13409,12136,6270,1894,326,29,1,0,720,20484,125968, %U A373427 313715,407297,308286,143725,42124,7683,830,47,1 %N A373427 Triangle read by rows: Coefficients of the polynomials SC(n, x) * EZ(n, x), where SC denote the Stirling cycle polynomials and EZ the Eulerian zig-zag polynomials A205497. %H A373427 Peter Luschny, <a href="/A373427/a373427.png">Illustrating the polynomials</a>. %e A373427 Tracing the computation: %e A373427 0: [1] * [1] = [1] %e A373427 1: [1] * [0, 1] = [0, 1] %e A373427 2: [1] * [0, 1, 1] = [0, 1, 1] %e A373427 3: [1, 1] * [0, 2, 3, 1] = [0, 2, 5, 4, 1] %e A373427 4: [1, 3, 1] * [0, 6, 11, 6, 1] = [0, 6, 29, 45, 30, 9, 1] %e A373427 5: [1, 7, 7, 1] * [0, 24, 50, 35, 10, 1] = [0, 24, 218, 553, 629, 366, 112,17,1] %p A373427 EZP((n, k) -> abs(Stirling1(n, k)), 7); # Using function EZP from A373432. %Y A373427 Cf. A132393 (Stirling cycle), A205497 (zig-zag Eulerian), A373433 (row sums). %Y A373427 Cf. A373429, A373428, A373432. %K A373427 nonn,tabf %O A373427 0,8 %A A373427 _Peter Luschny_, Jun 07 2024