This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373429 #9 Jun 13 2024 08:16:19 %S A373429 1,0,1,0,-1,1,0,2,-1,-2,1,0,-6,-7,21,-6,-3,1,0,24,118,-147,-91,126, %T A373429 -28,-3,1,0,-120,-1406,-109,3749,-2084,-450,514,-94,-1,1,0,720,16956, %U A373429 34240,-72307,-15475,56286,-21125,-674,1635,-262,5,1 %N A373429 Triangle read by rows: Coefficients of the polynomials S1(n, x) * EZ(n, x), where S1 denote the Stirling1 polynomials and EZ the Eulerian zig-zag polynomials A205497. %H A373429 Peter Luschny, <a href="/A373429/a373429.png">Illustrating the polynomials</a>. %e A373429 Tracing the computation: %e A373429 0: [1] * [1] = [1] %e A373429 1: [1] * [0, 1] = [0, 1] %e A373429 2: [1] * [0, -1, 1] = [0, -1, 1] %e A373429 3: [1, 1] * [0, 2, -3, 1] = [0, 2, -1, -2, 1] %e A373429 4: [1, 3, 1] * [0, -6, 11, -6, 1] = [0, -6, -7, 21, -6, -3, 1] %e A373429 5: [1, 7, 7, 1] * [0, 24, -50, 35, -10, 1] = [0, 24, 118, -147, -91, 126,-28,-3,1] %p A373429 EZP(Stirling1, 7); # Using function EZP from A373432. %Y A373429 Cf. A048994 (Stirling1), A205497 (zig-zag Eulerian), A320956 (row sums). %Y A373429 Cf. A373428, A373432. %K A373429 sign,tabf %O A373429 0,8 %A A373429 _Peter Luschny_, Jun 07 2024