This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373431 #9 Jun 06 2024 04:23:44 %S A373431 1,1,1,1,1,4,4,1,1,9,25,25,9,1,1,17,97,221,221,97,17,1,1,29,291,1229, %T A373431 2476,2476,1229,291,29,1,1,47,760,5303,18415,33818,33818,18415,5303, %U A373431 760,47,1,1,74,1818,19481,106272,317902,544727,544727,317902,106272,19481,1818,74,1 %N A373431 Triangle read by rows: Coefficients of the polynomials N(n, x) * EZ(n, x), where N denote the Narayana polynomials A131198 and EZ the Eulerian zig-zag polynomials A205497. %C A373431 There are various conventions for indexing the Narayana, the Eulerian numbers and the zig-zag Eulerian numbers. The one we use here requires that all corresponding polynomials have p(n, 0) = 1. %H A373431 Peter Luschny, <a href="/A373431/a373431.png">Illustrating the polynomials</a>. %e A373431 Triangle starts: %e A373431 [0] 1; %e A373431 [1] 1; %e A373431 [2] 1, 1; %e A373431 [3] 1, 4, 4, 1; %e A373431 [4] 1, 9, 25, 25, 9, 1; %e A373431 [5] 1, 17, 97, 221, 221, 97, 17, 1; %e A373431 [6] 1, 29, 291, 1229, 2476, 2476, 1229, 291, 29, 1; %p A373431 R := proc(n) option remember; local F; if n = 0 then 1/(1 - q*x) else F := R(n-1); %p A373431 simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end: %p A373431 EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1 - x)^(n + 1)) / x^2)): %p A373431 nc := (n, k) -> `if`(n = 0, 0^n, binomial(n, k)^2*(n-k)/(n*(k+1))): %p A373431 N := (n, x) -> local k; simplify(add(nc(n, k)*x^k, k = 0..n)): %p A373431 NEZ := (n, x) -> expand(EZ(n, x) * N(n, x)): %p A373431 Trow := n -> local k; if n < 2 then 1 elif n = 2 then 1, 1 %p A373431 else seq(coeff(NEZ(n, x), x, k), k = 0..2*n-3) fi: seq(print(Trow(n)), n = 0..6); %Y A373431 Cf. A131198 (Narayana), A205497 (Eulerian zig-zag), A373430 (row sums). %K A373431 nonn,tabf %O A373431 0,6 %A A373431 _Peter Luschny_, Jun 05 2024